NON-VANISHING OF GEOMETRIC WHITTAKER COEFFICIENTS FOR
REDUCTIVE GROUPS

JOAKIM FERGEMAN AND SAM RASKIN

ABSTRACT. We prove that cuspidal automorphic D-modules have non-vanishing Whittaker co-
efficients, generalizing known results in the geometric Langlands program from GL, to general
reductive groups. The key tool is a microlocal interpretation of Whittaker coefficients.

We establish various exactness properties in the geometric Langlands context that may be of
independent interest. Specifically, we show Hecke functors are t-exact on the category of tempered
D-modules, strengthening a classical result of Gaitsgory (with different hypotheses) for GL,,. We
also show that Whittaker coefficient functors are t-exact for sheaves with nilpotent singular support.
An additional consequence of our results is that the tempered, restricted geometric Langlands
conjecture must be t-exact.

We apply our results to show that for suitably irreducible local systems, Whittaker-normalized
Hecke eigensheaves are perverse sheaves that are irreducible on each connected component of Bung.
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1. INTRODUCTION

1.1. A mystery. Although this paper is concerned with automorphic sheaves and not with auto-
morphic forms, our motivation comes from phenomena more easily witnessed in the latter context.
Therefore, we begin our story on the upper half plane.

1.1.1. Background on modular forms. We start with some elementary recollections about modular
forms (say: holomorphic, of level 1, without nebentypus, of arbitrary weight).

Recall that such a modular form is a holomorphic function f on the upper half plane H, satisfying
a family of functional equations. Among these is the relation f(r+ 1) = f(7) for 7 € H. Moreover,
as a function on the analytic punctured disc function on:
T—exp(27i-T

H/{r~r+1) T 0 gl < 1)

there is a requirement that f(¢q) extend to a holomorphic function over the puncture at ¢ = 0. It
follows that f(q) can be expanded as a power series:

f(Q) = Zanqn'

n>0

We remind that the coeflicients a,, in the g-expansion are the fundamental numerical invariants in
the theory of modular forms.

Remark 1.1.1.1. Recall that f is a cusp form if ag = 0. It is manifest that for a non-zero cusp form
f, there exists an n > 1 such that a, # 0. More generally, non-constant modular forms have some
ap # 0 forn > 1.

1.1.2. Adélic interpretation. It is not our purpose to review the construction of functions on adelic
groups from modular forms. However, we briefly state the outcomes.

We let G = PGLy and let N = G, denote the radical of its standard Borel and T' = G,,, be its
standard Cartan.

e For f as above, there is an associated function f on G (Aq).
e The function f is invariant under the left action of G(Q) and the right action of G (AiQnt)7

where AiQnt =7ZC Aq is the subring of integral adeles.
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e The coefficient ag of f is the constant term:!

ap = / fy
N(Q)\N(Aq)
e The coefficient a,, of f is essentially the Whittaker coefficient:

p ~ / Fyam) - p(=)dy. (1.1.1)
N(Q)\N(Aq)

Here o, € T(Agn) = Agn’x is n (considered as a finite idele, living in PGL2(Aq)), and 9 is

the standard character of Aq = N(A) vanishing on Q and Z. The symbol ~ indicates that
we have omitted a normalizing factor of Archimedean nature; see [Del] Proposition 2.5.3.2
or [Gel] Lemma 3.6 for precise assertions.

)dry.

We refer to [Del] and [Gel] for detailed derivations of the above dictionary.

1.1.3. Generalization to reductive groups. The notions from the previous section make sense for
general reductive groups G over global fields F. There are automorphic forms, and they have
constant terms indexed by proper parabolic subgroups of G. A cusp form is one with vanishing
constant terms.

Similarly, there are Whittaker coefficients. When our automorphic forms are unramified at finite
places, these coefficients are? indexed by divisors on® “Spec” of the ring of integers of the global
field, where these divisors take values in the set AT of dominant coweights for G.*

Then there is a natural question, attempting to generalize the naive observation from §1.1.1:

Question. For a non-zero cusp form f on G(Apr), is some Whittaker coefficient of f non-zero?

The easy argument from §1.1.1 can readily be adapted to the adelic setting to give a positive
answer for (P)GLs. This argument adapts more generally to GL,: this is related to the strong
multiplicity one theorem, and uses the special mirabolic subgroup of GL,,.

However, the answer is no for general G. It fails already for SLs for silly® reasons, and it fails for
G Spy for serious reasons (see [HPS]). There is a conjecture due to Shahidi that a tempered L-packet
of automorphic representations has a unique representative with non-zero Whittaker coefficients
(see the discussion in the introduction to [Shal).

IMore conceptually, the constant term of f should be thought of as a function on T(Q\T(AQ)/T(AY") ~R™".
It happens to be constant in the holomorphic case; but this good fortune does not occur for non-holomorphic modular
forms, where one needs to consider the constant term as a function on R>°.

2This is not quite accurate; we can get away with it only because of the simplicity of holomorphic modular forms.
One needs to also allow the insertion of elements of the group at infinite places in general; this is serious for Maass
forms, or automorphic forms for other groups. The easiest correction is to consider Whittaker functions on G(A)
rather than mere Whittaker coefficients (which are values of the Whittaker function at particular adelic points; the
above formula gives the values when we put the identity at the infinite place of Q).

To simplify the exposition (particularly since we will eventually be concerned with everywhere unramified auto-

morphic forms/ sheaves over function fields, we do not further emphasize this (important) point.

3The scare quotes indicate that for a global field of positive characteristic, we take the corresponding smooth
projective curve.

4For instance, for G = PGLa, At = ZZ°. Note that a Z=°-valued (i.e., effective) divisor on Spec(Z) is equivalent
data to a number n > 1: D = 3 k,[p] corresponds to n = [ p*».

5Namely, the torus does not act transitively on the set of characters.
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Roughly speaking, one can think of this failure as the source of the many complications in the
theory of automorphic forms for reductive groups beyond GL,, and for much of our ignorance in
the subject.

1.1.4. A vague statement of the problem. Broadly, the problem we consider is: where do Whittaker
coefficients of automorphic forms come from for G # GL,? In this paper, we completely settle the
corresponding problem in the setting of global geometric Langlands in characteristic 0.

We describe the geometric context in more detail below. But here, we state one long-standing
motto: there are no L-packets in geometric Langlands. There are various ways of arriving at this
conclusion, but one is simply that it is forced by the geometric Langlands conjectures, as reviewed
below.

So we may formulate the mystery stated above: why are there no L-packets geometrically? This
question has been the subject of speculation in the geometric Langlands community for some time
now, with many possible answers having been suggested. The purpose of this paper is to provide a
first definite answer this question.

1.2. The geometric setting. We now survey the role of Whittaker coefficients in geometric Lang-
lands and state some of our main results.

1.2.1. Notation. We work over a field k of characteristic zero. We fix X a smooth, geometrically
connected projective curve over k.6

We let G be a split reductive group over k with Langlands dual group G. We let B be a Borel
in G with unipotent radical N. We let e.g. Bung denote the moduli stack of G-bundles on X, and
LS the moduli stack of G-bundles on X with connections, i.e., de Rham G-local systems on X.

1.2.2. The geometric Langlands conjecture (after Beilinson-Drinfeld, Arinkin-Gaitsgory, and Gaits-
gory). Recall the statement of the geometric Langlands conjecture of Beilinson-Drinfeld (given in
this form by Arinkin-Gaitsgory [AG]):

]LG : D(Bung) ~ IndCohNﬂpspec (LSG') ~ Ind(COhNilpspec (LSG))

Here we refer to [AG] for discussion of the right hand side; we simply say that Cohyizp,,..(LS¢s) C
Coh(LS) is a certain subcategory of the DG (derived) category of bounded complexes of coherent

sheaves; we are denoting by Nilpsyec € T*[—1] LS5 the spectral global nilpotent cone considered in
[AG].

1.2.3. There are many compatibilities the above equivalence is supposed to satisfy; see [Gai6] for
an overdetermined list. Here is a key one, called the Whittaker normalization.
There is a functor:

coeff : D(Bung) — Vect

of first” Whittaker coefficient; we remind that in the categorical framework, vector spaces are
considered analogues of numbers in the classical setting. This functor is a precise geometric analogue

6In the body of the paper, we assume at times that X admits a k-point € X (k). This is a lazy crutch; our main
theorems are verifiable after finite degree field extensions. Therefore, in the body of the paper, we sometimes allow
ourselves to ignore the fact that this is a genuine additional hypothesis on X if k is not algebraically closed.

"We are ambivalent about the indexing here, but use this terminology in the introduction. See Remark 5.2.1.2.
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of the integral (1.1.1) for n = 1. Roughly speaking, one pulls back to Buny, tensors with an Artin-
Schreier/exponential sheaf (relative to a non-degenerate character), and then pushes forward to a
point; we refer to §5 for details (including normalizations on cohomological shifts).

Then the diagram:

Lg
D(Bung) = IndCOhNﬂpspec (LSG)
C%‘R Ay—)
Vect

is supposed to commute.

Remark 1.2.3.1. For an irreducible local system o € LSx(k), let 0, denote the skyscraper sheaf
at this point. Geometric Langlands predicts that there is an object Aut, € D(Bung) correspond-
ing to it, which is the corresponding automorphic eigensheaf. The Whittaker normalization here
should yield an isomorphism coeff(Aut,) ~ k € Vect, pinning down all ambiguity of the choice of
eigensheaf. This may be compared to the classical setting of modular forms, where one normalizes
a cuspidal eigenform by requiring a; = 1.

1.2.4. In the geometric setting, there are additional Whittaker coefficients, analogous to the a,, for
other n’s. The reader may turn to §5 for the construction of functors coeffp : D(Bung) — Vect
indexed by A*-valued divisors D on X; for a smarter (and more conceptual) construction, see
[Gaib] §5.8.

Below, we describe an alternative construction that is more easily stated.

Gaitsgory has shown [Gai2| that there is a canonical action of QCoh(LS) on D(Bung) refining
the Hecke action; this is the spectral decomposition of the automorphic category D(Bung).

It follows that there is a unique QCoh(LSx)-linear functor functor:

coeff™™™ : D(Bung) — QCoh(LS)
fitting into a commutative diagram:

D(Bung) —2™™ , QCoh(LSg)

W} l

Vect.
We provide details in §10.2. As in loc. cit., coeff®™ “knows” all Whittaker coefficients of automorphic
sheaves simultaneously (while also encoding reciprocity laws between them).
We see that the geometric Langlands equivalence must fit into a commutative diagram:

Lg

~

D(Bung) — IndCOhNilpspec (LSG‘)

CO&TEN /

QCOh(LSG)

where the functor ¥ is almost an equivalence (see [Gaid], [AG]).
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1.2.5. A strategy for proving the geometric Langlands equivalence. The functor ¥ displayed above
is fully faithful on compact objects (it induces the embedding Cohyjip,,..(LS5) € Coh(LSs) C
QCoh(LSs)).

Therefore, proving the geometric Langlands equivalence amounts to showing:

o coeff*" is fully faithful on the subcategory D(Bung)® € D(Bung) of compact objects.
e coeff™® maps compact objects of D(Bung) onto Cohnitpypec (LS¢7)-

In [Gai6], Gaitsgory outlines a strategy for proving these claims for GL,, (cf. below), with a strat-
egy that should adapt for general reductive G assuming some knowledge of Whittaker coefficients
here. The ideas are complicated, involving degenerate Whittaker coefficients, Fisenstein series, and
Kac-Moody representations. However, the basic idea in the strategy is that stated above.

Remark 1.2.5.1. The above strategy may be compared to Soergel’s bimodule theory via the analo-
gies:

Soergel theory Geometric Langlands
The functor V The functor coeff
Endomorphismensatz The existence of coeff*™"
Struktursatz Fully faithfulness of coeff®™® on D(Bung)®

We remark that the bottom right entry of this table remains conjectural (beyond GL,, see
below).

1.2.6. The GL,, case. Tt is known® (cf. [Gai6] “Quasi-Theorem” 8.2.10, [Berl]) that coeff®™" is fully
faithful on the category Deysp(Bungr, ) of cuspidal D-modules in the GL, case. The argument
imitates the proof of the multiplicity one theorem for GL,, for automorphic forms, going through
the mirabolic subgroup.

1.2.7. The general case. However, as for automorphic forms, we have been unable to prove anything
about Whittaker coefficients for general reductive groups G.

This failure has stood as a point of some concern. For instance, number theorists often express
consternation that the geometric situation is conjectured to be so different from the arithmetic sit-
uation, where cuspidal automorphic representations commonly are non-generic. One imagines that
if geometric Langlands fails, it fails because the nice predictions regarding Whittaker coefficients
are incompatible with some pathological example for automorphic sheaves.

Our first main theorem states that this does not occur:

Theorem A. The functor:

coeffer

Deysp(Bung) € D(Bung) —— QCoh(LSx)

is conservative. That is, if F € Deysp(Bung) with coeffenh(ff) =0, then F =0.

Remark 1.2.7.1. Applying the definition of cuspidal D-modules (and the existence of the left adjoint
Eisenstein functors Eis), the above is equivalent to the assertion that D(Bung) is generated under
colimits by Eisenstein series D-modules for proper parabolic subgroups and Poincaré series D-
modules; we refer to [Gai6] for the definitions.

8In geometric Langlands, this style of argument has a long lineage that we do not survey here. We refer to [FGV2]
as one key example.
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In other words, Theorem A asserts that the geometric representation theorist’s favorite methods
for producing automorphic D-modules are in fact exhaustive.

Remark 1.2.7.2. To match our knowledge in the GL,, case, we would want to know that the functor
of Theorem A is fully faithful; this paper does not settle that question.

1.2.8. Tempered D-modules. In fact, we prove a stronger result that Theorem A; it is more technical
to state, but optimal.

Fix a point € X (k). Using derived Satake, Arinkin-Gaitsgory defined a subcategory:

D(Bung)®8temP € D(Bung)

of anti-tempered objects; the terminology is taken from [Ber3] §2. The embedding here admits a
left adjoint. There is a certain quotient category D(Bung)t*™P.

A priori, the above definitions depend on the point x € X (k); in [FR], we showed the category
is actually independent of this choice in a strong sense; this justifies omitting x from the notation.

According to Arinkin-Gaitsgory, under geometric Langlands, the quotient D(Bung)®*™P should
identify with the quotient QCoh(LS5) of IndCohuizp,,.. (LSs).

It is straightforward to see that coeff™ factors through D(Bung)'*™P. Therefore, by the logic
of §1.2.5, one expects the induced functor:

D(Bung)™*™ — QCoh(LSs)
to be an equivalence; this is the tempered geometric Langlands conjecture.

We prove:
Theorem B. The above functor

coeff™ : D(Bung)*™P — QCoh(LSy)
18 conservative.

This result appears as Theorem 10.3.3.1 in the body of the paper.
By [Ber3], the composition:
Dcysp(Bung) € D(Bung) — D(Bung)temp
is fully faithful (more precisely, Beraldo shows Deysp(Bung) is left orthogonal to D(Bung)2nti-temp),

Therefore, Theorem B implies Theorem A. We focus our attention on the latter result in the
remainder of this introduction.

1.3. Informal overview. Our work contains other new, intermediate results of independent inter-
est; we detail them later in the introduction. First, we informally describe their context, and the
overall setting for our proof of Theorem B.
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1.3.1. First, the recent work [AGKRRV1] provides a new set of tools for studying D(Bung). In
effect, §20 of loc. cit. reduces the study of D(Bung) to its subcategory Shvy,(Bung) of D-modules
with nilpotent singular support on Bung.

The methods of [AGKRRV1] allow us to reduce Theorem B to instead showing:
Theorem C. The composition:

Shvyip(Bung) € D(Bung) — QCoh(LSx)
18 conservative.

The reader can find the details on the reduction of Theorem B to Theorem C in §10.3.

A nice feature of Shvy;;,(Bung) is that its objects are (colimits of) holonomic D-modules with
reqular singularities. These are the objects with which the Riemann-Hilbert correspondence is
concerned, so one may use additional sheaf-theoretic tools to study them, see e.g. [KK], [Gin], and
[KS]; broadly speaking, these additional tools are parts of microlocal geometry.

1.3.2. Irregular singular support. Let us return to the case where G = PGLs. Recall from Remark
1.1.1.1 that modular forms with vanishing Whittaker coefficients are constant. In the geometric
setting, one similarly can show that D(Bunpgr, )™ **™P consists of objects with constant coho-
mologies, equivalently (by simple-connectivity in this case), with lisse cohomologies.

One can say this differently: D(Bunpgr, )™ P is exactly the category of D-modules with
singular support in the zero section.

Our starting point is the idea that this should generalize: for general G, D(Bung )™ t**™P should
be the category with irregular singular support.

At the very least, we obtain a similar result in the nilpotent setting:

Theorem D. The category Sthilp(Bun(;)anti‘temp coincides with Shvygy, ... (Bung), the subcate-
gory of objects with irregular nilpotent singular support.

We will refine this result in our later discussion. But, roughly speaking, the overall strategy is to
connect both (anti-)temperedness and Whittaker coefficients to microlocal properties of sheaves,
thereby proving Theorem B.

1.4. Results for nilpotent sheaves. We obtain some striking results for Whittaker coefficients
of sheaves with nilpotent singular support, that we describe presently.

1.4.1. Some motivating geometry. Recall that there is a characteristic polynomial map x : g/G —
g//G; here the left hand side is the stack quotient and the right hand side is the GIT quotient.
The nilpotent cone N is characterized by the formula N/G = x~!(0). The Kostant slice defines a
section of x. Clearly the Kostant slice intersects N/G in a single point.

The above story has a global analogue. The role of g/G is played by Higgs, = T Bung, the
space of Higgs bundles for G. The role of g//G is played by the Hitchin base, while y is replaced
by the Hitchin fibration. The role of N/G is played by the global nilpotent cone Nilp C T* Bung,
which is by definition the zero fiber of the Hitchin fibration. The Kostant slice admits a global
analogue (called g—0-opers in [BD] §3.1.14).

Therefore, the global Kostant slice intersects Nilp at a distinguished point, which we label f&loP
in §2.5.6. One can show that this point lies in the smooth locus of Nilp; therefore, there is a unique
irreducible component Nilp¥°s of Nilp containing £8P,
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We remark that when the genus of the curve is > 1, the Kostant slice and Nilp are both
Lagrangians in 7™ Bung-.

1.4.2. Finally, we make one more remark, connecting the above to Whittaker coefficients.

To state it precisely, we recall that it is not quite Buny that appears in the definition of coeff,
but a twisted form of Buny that we denote Bun% in §5. This form of Bun% has a canonical map v :
Bunf — A!, which is the Whittaker character. This defines a Lagrangian di) : Bun$y — 7% Bun'}.
We may compose this Lagrangian with the natural Lagrangian correspondence between 1™ Bun%
and 7™ Bung; tracing the definitions, the resulting Lagrangian in T Bung is the global Kostant
slice.

In this sense, we may view the global Kostant slice as a microlocal shadow of the functor coeff;
physicists would say that the global Kostant slice is the brane corresponding to the functor coeff.

1.4.3. Statement of the main result. We can now formulate:
Theorem E. The cohomologically shifted functor of first Whittaker coefficient:
coeff[dim Bung] : Shvy,(Bung) — Vect

is t-ezact and commutes with Verdier duality. Moreover, for constructible F € Shvy;,(Bung), the
Euler characteristic of coeff[dim Bung|(F) equals the order of the characteristic cycle at Nilpkos.

We hope the geometry described above adequately has motivated this result. It is obtained by
combining Theorem 6.1.2.1, Theorem 8.0.0.1, and Theorem 8.2.1.1 in the body of the text.

1.4.4. A more refined picture. The above discussion can be made more precise as follows. Suppose
Yan is a complex manifold, A C T*Y?" is a closed, conical holomorphic Lagrangian; let AS™ C A be
the smooth locus.

Kashiwara-Schapira® [KS] associate to a sheaf F on Y** with singular support in A a certain local
system pa(F) on A, which is a form of the microlocalization of F.

The fibers of p(F) at points of AS™ are called microstalks, and may be computed by suitably
transverse vanishing cycles of F. In particular, formation of microstalks is t-exact (up to shift) and
commutes with Verdier duality. In addition, the Euler characteristics of these fibers are the degrees
of the characteristic cycle of F at the given point.

Therefore, our motivation is that for sheaves with nilpotent singular supports (which, we remind,
are automatically regular singular, so have Betti cousins), coeff is the microstalk at f8°P,

Remark 1.4.4.1. This idea is quite natural, and indeed, when we began discussing this work with
others, we learned that it had been considered some time ago by others: Drinfeld advertised the idea
some 20 years ago, and Nadler advertised it some 10 years ago. We are not aware of any recorded
source for it.

We understand that David Nadler and Jeremy Taylor have a proof of this precise assertion,
directly proving that coeff is computed by the microstalk at f&°P, using topological methods; this
is in contrast to our methods, which use special properties of the automorphic setting.!”

9This assertion is difficult to track in the stated form. A close result is [KS] Corollary 7.5.7, as well as the
subsequent remark.

10gince the first draft of this paper was circulated, the work of Nadler-Taylor appeared: see [NT]. Their work yields
an alternative proof of Theorem E that is topological in nature and does not use [Lin].
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Remark 1.4.4.2. We do not actually prove that Whittaker coefficients of nilpotent sheaves actually
are microstalks. What we prove is Theorem E as stated, which informally asserts that the coefficient
functor has all the same good properties as the microstalk functor would.

Although the geometric picture described above is quite simple and feels general, we use the
specific tools of geometric representation theory; specifically, we use a recent result of Kevin Lin
from [Lin|. See §8 for details.

1.4.5. Comparison to arithmetic ideas. We note that similar principles have appeared previously in
harmonic analysis. See for example [Rod] §IV Remarque 2 or [MW]. The assertion is that (under
favorable hypotheses), the multiplicity of the Fourier transform of a character of a representation
of a p-adic reductive group at the regular nilpotent orbit is the dimension of its Whittaker model.

It is quite enticing to make this analogy more precise.

1.5. A result for Hecke functors. We now state another intermediate result of independent
interest.

1.5.1. Background. Recall that Hecke functors are not t-exact on Bung. For instance, a Hecke
functor for a representation V' acting on the constant sheaf of Bung (which is in a single degree by
smoothness of Bung) tensors this constant sheaf with a cohomologically sheared version of V.

However, Hecke functors are not too far from exact either. For instance, one classically expects
cuspidal perverse eigensheaves for irreducible local systems (and see Theorem G below). By defini-
tion, Hecke functors transform such objects by tensoring with a (classical) vector space.

1.5.2. Statement of the result. The above discussion is suggestive of what the obstruction to exact-
ness is in general:

Theorem F. (1) There is a unique t-structure on D(Bung)*™P for which the projection D(Bung) —
D(Bung)t*™P s t-ezxact.
(2) Let V € Rep(G) be a representation. Then for x € X, the induced Hecke functor:

D(Bung)"*™ — D(Bung)"™P
18 t-ezact.
(8) More generally, for V as above, the parametrized Hecke functor:

Hy : D(Bung)"™P — D(Bung)"™ @ D(X)
is t-exact (up to shift by 1 = dim X ).

See Theorem 7.5.0.1 and Theorem 7.7.1.1 in the body of the paper.

The proofs of the first two statements are quite direct, but seem not to have been previously
observed. The third is a minor variant, except it relies on the independence of point in the definition
of temperedness (in other words: in (2), it is important that the implicit point z € X (k) in the
definition of the tempered category be taken to be the same as where the Hecke functors are taken).
The argument from [FR] works for Shvy,(Bung) in the f-adic setting, but we are not sure how to
adapt it to the full category Shv(Bung) in this setting. If so, our methods would yield a proof of
Theorem F in the ¢-adic case as well.

Remark 1.5.2.1. Besides the f-adic issue raised above, our argument provides an alternative to
[Gail] §2.12. We highlight that the construction in loc. cit. applies only for GL,, and is the major
technical point in that paper.



12 JOAKIM FERGEMAN AND SAM RASKIN

More explicitly: the main result of [Gail] is the formation of a certain quotient of D(Bungy,, )
with certain favorable properties, including that Hecke functors act exactly on it. The construction
in loc. cit. does not make sense for general G. We have provided an alternative (genuinely different)
construction of a quotient category with the same favorable properties. Moreover, our arguments
are substantially more direct than those in [Gail].

With that said, our argument in [FR] uses Gaitsgory’s generalized vanishing conjecture from
[Gai2]. As explained in [Gai2], this result immediately implies the vanishing conjecture considered
in [Gail]. For this reason, we cannot say that we have found a better understanding of the (not
generalized) vanishing conjecture, only of the intermediate results used in [Gail].

1.6. A remark on tempered Langlands. We now describe a surprising consequence of our work
for the geometric Langlands equivalence.

Roughly speaking, one is commonly taught that geometric Langlands is an equivalence of derived
categories, not abelian categories. We explain that this is in some sense wrong; most of geometric
Langlands can actually be understood as an equivalence of abelian categories.

1.6.1. Tt is well-known that the geometric Langlands equivalence is emphatically not exact.

First, in geometric class field theory, one finds D(Bung,,) ~ QCoh(LSg,,). The functor is a
variant on Fourier-Mukai for abelian varieties; experimentally, one finds the latter is far from exact.

Second, for non-abelian G, the constant sheaf on Bung should map to an object of IndCohyyp, ... (LS %)
concentrated in cohomological degree —oo (i.e., in degrees < —n for all n).

However, one expects some exactness properties. For instance, there are supposed to exist per-
verse eigensheaves for irreducible local systems (and see Theorem G); these correspond (up to shift)
to skyscraper sheaves at smooth, irreducible points of LS.

1.6.2. We recall the setting of restricted geometric Langlands considered in [AGKRRV1].

Here we expect an equivalence:

ShVNllp(BunG) = IndCOhNilpSPec (LSgStr)-

The space LS"GVeStr is defined as in loc. cit.

The tempered analogue should instead find an equivalence:

temp

Shvxiip(Bung) '™ % QCoh(LSE™™)

We claim that our results imply this (conjectural) equivalence must be ¢- exact up to shift. Perhaps
more concretely, this means that the composition:

Shvaiip (Bung) = IndCohip,... (LSE™) 2 QCoh(LSE™)
should be t-exact.

Indeed, let z € X (k) be a point; this defines a G-torsor on LSereS“. By [AGKRRV1] Theorem
1.4.5, the total space of this torsor is a union of ind-affine formal schemes by an action of G.

It follows that its functor I') to Vect (considered in [AGKRRV1] §7) is t-exact, and that an object
e QCoh(LS‘SS“) lies in degree 0 if and only if I'/(§ ® €y;) € Vect is in degree 0 for all V; here
&v,z is the vector bundle on LSE™ defined by the pair (V,z).
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On the other hand, for ¥ € D(Bung)'*™, we expect I'/(Lys™(F) ® Ev.z) ~ coeff(Hy, * F);
the latter lies purely in degree dim Bung by Theorem E and Theorem F, so ]LtGemp(ff) must lie in
degree dim Bung as well.

Remark 1.6.2.1. We similarly expect that the tempered Bett: Langlands equivalence conjecture in
[BZN] is t-exact; this corresponds to fact that the Betti moduli stack of local systems is the quotient
of an affine scheme by an action of G.

1.7. Application to Hecke eigensheaves. We apply our results to show the following result,
which can be thought of as an unconditional realization of the philosophy of §1.6.

Theorem G. Let o be an irreducible G-local system on X.

(1) Any Whittaker-normalized*! Hecke eigensheaf F, with eigenvalue o is perverse. Moreover,
at least if k is algebraically closed, Whittaker-normalized Hecke eigensheaves exist.

(2) If o is very irreducible in the sense of §11.1.2, the restriction of F, to each connected
component of Bung is irreducible.

The reader will find this result as Theorem 11.1.4.1; we also refer to Remark 11.1.4.3 where
it is noted that Whittaker-normalized eigensheaves are semi-simple for any (possibly not very)
irreducible local system.

We note that this answers an old question. Namely, from the point of view of the categorical geo-
metric Langlands conjectures, it is not clear why eigensheaves should be perverse or irreducible. We
show that this follows from exactness (and conservativeness) properties of the Whittaker functor.

We remark that the existence of Hecke eigensheaves stated above is proved via opers and is
disjoint from the methods of our paper; we have relegated the argument to Appendix A. Our
contributions are more to the structure of (normalized) eigensheaves, and we include the existence
argument, for the sake of completeness.

1.8. Outline of the argument. We now outline our argument for Theorem B. The details are
provided in §10.

1.8.1. First, we reduce to the corresponding statement for Shvyy,(Bung) using the technology of
[AGKRRV1].

1.8.2. Let N;lp C Nilp denote the open of generically reqular nilpotent Higgs bundles.
We prove:

Theorem H. Any object I € Shvy,(Bung) that does not lie in Sthilp(Bun(;)ami‘temp has SS(F)N
N;lp # 0.

This result is our Theorem 4.1.0.1. The proof reduces to a parallel statement for the flag variety of
the finite dimensional group G. We translate this to a statement about Lie algebra representations
via Beilinson-Bernstein. Finally, we apply a theorem of Loseu [Los] regarding associated varieties
of g-modules (and proved using ideas reminiscent of microlocal differential operators).

We wish to be clear: this is not the proof of the theorem written in The Book (in the sense of
Erdés); our argument is not geometric. It would be far better to have a proof that relies only on
standard properties of singular support and adapts to the f-adic setting.

1gee Remark 11.1.4.4 for our precise convention.
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1.8.3. Next, we have:

Theorem I. Suppose I € Shvy;,(Bung) satisfies SS(F) N Nilp # 0. Then for a point z € X(k),
there exists a representation V> € Rep(G)Y such that Nilp¥os C SS(Hys , *J).

/\71‘

This result appears in our work as Theorem 9.1.0.1. The proof uses basic geometry of the global
nilpotent cone and standard properties of singular support.

1.8.4. Finally, we deduce the claim as follows.

Suppose F € Shvyi;,(Bung) does not lie in Sthilp(Bung)anti’temp. We need to show that
coeff™ (F) £ 0.

By Theorem H, we have SS(&")HN%lp # (). By definition, it suffices to show that coeff(H 5 ,«JF) #

0 for some V. Therefore, by Theorem I, we are reduced to showing that coeff(F) # 0 when
NilpKes € SS(F).

But now the argument follows from Theorem E: by t-exactness, we are reduced to the case where
F is perverse (i.e., constructible and concentrated in cohomological degree 0). In that case, the Euler
characteristic of coeff(F) equals the degree of CC(F) at Nilp*°s, which is non-zero by assumption.

1.8.5. We remark that Theorem D follows easily, and therefore do not prove it in the body of the
paper. Here is the argument:

e Shvyip,.., (Bung) C Sthﬂp(Bung)a“tiftemp by Theorem H, and Sthﬂp(Bung)amiftemp
equals Ker(coeffe™® ’Sthilp(BunG)) by Theorem C.

e By the above, it suffices to show Ker(coeff®! |Shvaizy (Bung)) © SVt (Bung). The proof
of Corollary 10.1.1.2 shows exactly this.

1.8.6. Regarding the £-adic setting. We expect analogues of each of the theorems above to hold
for the setting of f-adic sheaves considered in [AGKRRV1]. In particular, we believe our overall
strategy is the right one.

However, for each'? of the above theorems, we at some point in the argument use specifics of D-
modules, particularly regular holonomic D-modules/Betti perverse sheaves. This is most egregious
for Theorem H, but is true at some point for every one of these results.

1.9. Acknowledgements. We are happy to thank Dima Arinkin, Sasha Beilinson, David Ben-Zvi,
Dario Beraldo, Gurbir Dhillon, Vladimir Drinfeld, Pavel Etingof, Tony Feng, Dennis Gaitsgory, Tom
Gannon, David Kazhdan, Kevin Lin, Ivan Loseu, Victor Ginzburg, Sergey Lysenko, Ivan Mirkovic,
David Nadler, Nick Rozenblyum, Yiannis Sakellaridis, Will Sawin, Jeremy Taylor, and Yasha Var-
shavsky for generously sharing their ideas, for related collaborations, and for their encouragement.
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2. NOTATION

In this section, we set up some notation that will be used throughout the paper.

12The first two parts of Theorem F are an exception.
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2.1. Categories. We freely use the language of oo-categories and higher algebra, cf. [Lurl], [Lur2],
[GR2], [GR3].

We understand DG categories as k-linear stable co-categories. We let DGCat¢qpnt denote the cate-
gory of presentable (in particular: cocomplete) DG categories with morphisms being continuous DG
functors. We freely use Lurie’s symmetric monoidal structure ® on DGCatcop, and the associated
duality formalism.

2.2. Categories of sheaves. Here we set up our notation and conventions for sheaves. We refer
to [GKRV] Appendix A and [AGKRRV1] Appendices D and E for details and proofs of various
assertions.

2.2.1. D-modules. For a prestack Y locally almost of finite type, we let D(Y) denote the DG category
of D-modules on Y, defined as in [GR2]. For amap f:Y — Z, we let f': D(Z) — D(Y) denote the
corresponding pullback functor. If f is ind-representable, we let fiqr : D(Y) — D(Z) denote the
pushforward functor.

Where defined, we let fi (resp. f*®) denote the left adjoints to these functors.

2.2.2. For Y an algebraic stack and F € D(Y), we say that F is locally compact if for every affine
scheme S and every smooth map f: S — Y, f(F) € D(S) is compact.

We remind that compact objects of D(Y) are locally compact, but the converse does not hold.
For example, the constant sheaf on BG,, is locally compact but not compact; the same applies
for the constant sheaf on a non-quasi-compact scheme. More generally, any constructible object
(defined as below) is locally compact.

2.2.3. Ind-constructible sheaves. For S an affine scheme of finite type, we let Shv(S)¢ C D(S)
denote the subcategory of compact objects that are holonomic with regular singularities. We then
let Shv(S) = Ind(Shv(S)¢); this is a full subcategory of D(S).

For Y an algebraic stack, we let Shv(Y) := limg_,y Shv(S) and let Shv(Y)<" = limg_,y Shv(S)°.
In both circumstances, the limits are taken over affine schemes S mapping to Y and the implied
functors are upper-! functors. Standard arguments allow us to replace the limit by that over the
subcategory of S’s mapping smoothly to Y. It follows that Shv(Y) has a natural ¢-structure, and
Shv(Y)e°ms™ is closed under truncations.

constr

We refer to objects of Shv(Y) as ind-constructible sheaves on Y and objects of Shv(Y) as
constructible sheaves on Y.

As in [AGKRRV1] §F.2.5, we have a well-defined Verdier duality equivalence Shv(Y)cnstop ~
Shv(Y)mstr that we denote DVerdier,

Remark 2.2.3.1. Our usage of the notation Shv here is slightly different than e.g. in [AGKRRV1],
where it is meant to express a certain ambivalence about the specific choice of sheaf theory. We
work in the context of D-modules in characteristic 0, so do not share the ambivalence of loc. cit.
With that said, the notation is similar in spirit.

2.2.4. Singular support. When Y is an algebraic stack and A C T*Y a closed, conical subscheme, we
let DA(Y) € D(Y) denote the full subcategory of sheaves with singular support in A.

Similarly, we let Shva(Y) C Shv(Y) denote the corresponding full subcategory.
We again refer to [GKRV] §A.3 for definitions.
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For F € D(Y), we let SS(F) C T*Y denote the singular support of &F, which is ind-closed in T*Y;
cf. [AGKRRV1] §H.1.2. On occasion, for F constructible, we let CC(F) denote the characteristic
cycle of F.

2.3. Lie theory.

2.3.1. Throughout the paper, G denotes a split reductive group over k. We choose opposing Borel
subgroups B, B~ C G with BN B~ =T a fixed Cartan. We let N (resp. N~ ) denote the unipotent
radical of B (resp. B™).

We let A denote the lattice of weights of G and let A denote the lattice of coweights.!® For A € A
and pu € A, we let (A, ) € Z denote the pairing of the two. We let AT C A denote the subset of
dominant weights, and similarly for AT.

We let o denote the set of nodes for the Dynkin diagram of G. For ¢ € Iz, we let «; denote the
corresponding simple root.

We let 2p € A denote the sum of the positive roots, and similarly for 25 € A.

We let G denote the Langlands dual group of G, considered as an algebraic group over k.

2.3.2. We let girreg € g denote the reduced closed subscheme consisting of irregular elements.

We let N C g denote the nilpotent cone. We let Nireg := NN girreg denote the subscheme of irreg-

ular nilpotent elements. We let N C N denote the open complement to Njeg, Which parametrizes
of regular nilpotent elements.

2.4. Higgs bundles.
2.4.1. We remind that a Higgs bundle (on X, for the group G) is a pair (Pg,¢) where Pg is a
G-bundle and ¢ € T'(X, gy, ® Q%).

Recall that Higgs bundles form an algebraic stack Higgs., which can be written as a mapping
stack:

Higgs, == Maps(X, g/G x G) X {Qk 7.
Maps(X,BGn)

We remind that our choice® of kg induces an isomorphism:
T* Bung ~ Higgsg,
which we take for granted in the sequel.

2.4.2. Globalization. For A C g closed, conical, and stable under the G-action, it is convenient to
denote:

Higgsg p == Maps(X,A/G x G,) X {QL}.
’ Maps(X,BGn,)

Clearly Higgsg; o forms a closed substack of Higgsg.
In the special case A = N, we let:
Nilp == Higgsg -
130ur convention here is opposite to [AGKRRV1].

Mpfore canonically, T* Bung identifies with the variant of Higgs, with g¥ replacing g everywhere. For example,
this applies as well to possibly non-reductive affine algebraic groups.
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To reiterate:
Nilp C Higgs; = T* Bung is the global nilpotent cone.

(We highlight this in part in acknowledgement that the notation does not make it easy for the
reader to remember which of N and Nilp has to do with g and which has to do with Higgs..)

2.5. Global nilpotent cone. We now establish some notation relating to Nilp.

2.5.1. Irreqular nilpotent Higgs bundles. We define:
Nilpireg == Higgsg ..., © Nilp.

irreg —

This stack parametrizes irreqular nilpotent Higgs bundles. Clearly Nilpiweg € Nilp is a closed
substack.

Ezample 2.5.1.1. For G = GLo, we have Nilpirreg = Bung, which is embedded in Higgs, as the
zero section.

2.5.2. Generically regular nilpotent Higgs bundles. We let:
N%lp C Nilp

denote the open complement to Nilpireg. This is the stack of generically regular Higgs bundles.

(We use this terminology because a point ¢ € Nilp lies in N%lp if and only if there is a dense open
U C X over which ¢ is regular nilpotent.)

Example 2.5.2.1. For G = G Lo, N%lp parametrizes pairs (€, ¢) where € is a rank 2 vector bundle
and ¢ : & — & ® Q% is a non-zero Higgs field with ¢? = 0.
2.5.3. Mapping stack notation. Let Y be a stack and let H C Y be an open substack.
We let Mapsnondeg (X, Y 2 H) denote the prestack with S-points given by maps:
y: Xg=Xx85-1Y
such that there exists an open U C Xg such that:

e U C Xg is schematically dense.

e U — S is a (necessarily flat) cover.
e y|y factors through Y.

(See e.g. [Ras3] §2.9 and [Sch] §2.2.1, where similar constructions are discussed.)

2.5.4. A Springer construction. In the above notation, we now clearly have:
N%lp = Mapsnondeg (X, N/G 2 N/G)

Let n C n denote the open subscheme of elements of n that are regular as elements of g. For the
reader’s convenience, we remind that if we choose negative simple root vectors f; € n~ (for i € Jg)
and let f == ro(fi,—) :n — A denote the corresponding projection onto the simple root space,

then n = N9, {f # 0}.
We now form:

N%lp = Mapsnondeg (X, 0/B C n/B).

15I.e., for U C Z C Xg with Z C Xg closed, we necessarily have Z = Xg.
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Observe that there are canonical maps:
Nilp — Nilp

and:

N;lp — Bung — Bunry.

For a coweight A, we let:

X =
Nilp C Nilp

f16

denote the inverse image o Bung‘ﬂ along the top map.

It is easy to see!'” that the projection:

— A .
Nilp — Nilp
o A
is a locally closed embedding. We therefore abuse notation in letting Nilp  denote the corresponding

locally closed subscheme of N;lp. Note that every field-valued point of N%lp lifts to N%lp because

o ~ 0 . oA
n/B — N/G is proper and induces an isomorphism n/B — N/G; therefore, the various Nilp
define a stratification of Nilp.

1674 pe explicit about our conventions, Buny- is the component of Buny parametrizing T-bundles Pr where
deg(P4) = (u, \) for each weight p; here P is the line bundle (aka G,,-bundle) induced by the map p: T — Gyp.

17Namely, suppose (Pg, @) is an S-point of N;lp.

For A € AT, let P2 denote the induced vector bundle and let ¢ : Pa — P2 ® Q% be the corresponding Higgs field.

Because ¢ is generically regular, note that ¢* is nilpotent of order (27, A) + 1; indeed, this reduces to the corre-
sponding fact for a principal nilpotent acting on V*, and this follows from sl-representation theory.

We now form:

Image((¢)*7V) C Py ® (%) ®*7Y
and:
£ = Image((¢")**V) ® (%) ¥~ PN C Pg.

If (P, ¢) lifts to a point of Ni.'lpA, then each £* is a line bundle of degree (X, A) and the quotient P2 /L™ is also a
vector bundle. Indeed, one verifies that in this case, £* is the line subbundle coming from the B-structure on Pg in
the Pliicker picture. i

Conversely, we claim that if ?é‘;/LA is S-flat, (P, ¢) lifts (on each connected component of S) to some N%lpk.

Indeed, this hypothesis implies that formation of Image((d)k)(zﬁ’k)) commutes with further base change, i.e., that
for every T' — S, we have:

Image(((¢™)]7) ") = Image((¢*) ") 7.

When S is the spectrum of a field, it is easy to see £ is a torsion free sheaf of generic rank 1, i.e., a line bundle.
Therefore, by the base-change property, every fiber of the coherent sheaf £* is 1-dimensional, so £ is a line bundle.

For dominant weights X, y1, o> * equals (the restriction of ) ¢*®id +id ®¢* under the natural map PgRPL, — ng‘“‘ .
Therefore, we see that:

(¢>\+u)(2ﬁ,>\+u) _ (¢>\ ®id+id ®¢M)(2ﬁ«\+u) — (¢>\)(2ﬁ,>\) ® (¢u)(2ﬁyu)

It then follows that the Pliicker relations hold, so the £*’s determine a reduction of Pg to B. Clearly the Higgs field
¢ is a section of np, ® Q% because ¢*(£L*) = 0 for each A. So we have lifted our point to [ [ NleA.

It follows that ] Nzlp/\ is a flattening stratification for &P /L> € QCoh(X x Nilp) relative to the (projective)
morphism X x Nzlp — N%lp, or for the coherent sheaf @{:1?’5\; /LAi for a spanning set of weights A1,..., Ar.

o A
It then follows from the theory of flattening stratifications that for each connected component Nilp , the embedding
into Nilp is locally closed.
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The following result describes the geometry in more detail:

Proposition 2.5.4.1. Let A € A be a coweight.

o A
(1) Nilp is smooth of dimension dim Bung.

(2) Suppose (i, A) +2g —2 < 0 for some i € Ig. Then:
N;lp;\ = 0.
(3) Suppose (a;, \) +2g —2 >0 for alli € Ig. Then N%lpx is non-empty and connected.
This result is proved!® in [BD] §2.10.3.

It follows from the proposition that the irreducible components of N;lp are exactly the closures

oA
of the strata Nilp . Therefore, we have an injective map:
¢ : Irr(Nilp) < A (2.5.1)

where Irr(Nlep) is the set of irreducible components of N;lp. We let Al C A denote the image of
this map (the notation abbreviates relevant); explicitly, A € A*! if and only if (as, \) > 2 — 2g for
all i € Jg.

. o A
Ezample 2.5.4.2. Suppose G = GLy. Then for a coweight A\ = (d1,ds) € Z2, Nilp" parametrizes
short exact sequences 0 — £; — & — Lo — 0 plus a non-zero map @ : L3 — L1 ® Q& where
deg £; = d;; the corresponding Higgs field is:

&=Ly L0k = 0k,

We remark that £; = Ker(yp) and Lo = Image(¢) ® Qﬁé@_l can be recovered from the generically
regular nilpotent Higgs field .

2.5.5. Invariants. For later reference, we attach two numerical data to a field-valued point (Pq, ) €
N;lp.
First, we let:
a1(Pa, ) € 71 5(G) = A/ZA

denote the first Chern class of P (cf. [BD] §2.1.1). We explicitly say: there is no dependence on ¢,
and this invariant behaves well in moduli (it is locally constant on Bung).

Gea-valued divisor disc(Pg, ¢)

on X, (for Agaa being coweights of the adjoint group G of G) as follows. First, as above, by
generic regularity (and the valuative criterion of properness), this point lifts uniquely to a map
X — n/(B x Gy,;), where the underlying map X — BG,, is given by the canonical bundle. We
have a projections n/B x G, — A'/G,, corresponding to projections to simple coroot spaces. By
assumption, each induced map:

Second, we define the discrepancy divisor of (Pq, ), which is a A

X = A'Y/G,,

181y fact, the result in [BD] is formulated in greater generality: it allows for non-regular nilpotent elements as
well. We remark for the sake of comparison that in the notation of [BD] §2.10.3, Yo = Y for the regular nilpotent
conjugacy class. Similarly, in this regular nilpotent case, the space Mc maps to Bunr; its fiber over Pr € Buny is
Hieﬂc (X, P5 ® Q%) \ 0; in particular, the fibers are empty or connected, and the condition of some fiber being
non-empty is exactly the numerical condition given in the proposition.
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sends the generic point of X to the open point of A!/G,,. Equivalently, we have obtained (Z-valued)
effective divisors disc;(Pg, ¢) on X for each i € Jg. As the map:
5"_)(5‘9(12')1'63@

o Z

AGad
i€lg

is an isomorphism, we see that there is a unique divisor disc(P¢, ¢) as above such that (disc(Pg, ¢), ;) =
disc;(Pa, ).

o X
Finally, we observe that for (Pg, ) € Nilp , we can explicitly compute the above invariants.
Specifically, ¢1(Pg, o) is the image of \ in 7r£f1g (G). Second, we have:

deg(disc(Pg, ) = A+ (29 — 2)p € Al.. (2.5.2)

Here \ € Agaa is the image of A\ under the natural map A — \gaa.

Remark 2.5.5.1. As A — W?lg(G) X Agaa is injective,'® we can recover the invariant A of (Pg, )
from ¢;(Pq, p) and deg(disc(Pq, p)).

Remark 2.5.5.2. The discrepancy divisor is a more natural indexing tool than X itself. For example,

for A € A to be relevant is equivalent to saying N+ (29 — 2)p is a dominant coweight for G2,

Remark 2.5.5.3. Observe that deg(disc(Pg, ¢)) always lies in the image of A — Agaa; indeed, this
follows from (2.5.2) as (29 —2)p = (g — 1) - 2p lifts.

Ezample 2.5.5.4. In the setting of Example 2.5.4.2, ¢1(&, ¢) is the degree of £, while the discrepancy
divisor is the divisor of zeroes of the map .

2.5.6. FEverywhere reqular Higgs fields and the Kostant component. We let N;lpreg denote the map-
ping space:
Maps(X, N/G)
Clearly N%lpreg C N%lp is open.
Let Zy C G denote the stabilizer subgroup of some regular nilpotent f € N. Because G acts
transitively on N, we have J\filpreg = Bung,. Clearly the center Z¢ of G embeds into Zy; recall that

Z maps isomorphically onto the reductive quotient of Z;; therefore, N;lpreg is smooth.

The Kostant slice defines a base-point f8l°P e N;lpreg. We let NilpKos C Nglpreg denote the
corresponding connected component. Explicitly, we have:

Nilphos = N%lpuﬂg)/j.

The point f&°P is given by the G-bundle P@E™ (induced from 0%3 via —2p: Gy, —» T — G) with
its natural regular nilpotent Higgs bundle.

Kos

Remark 2.5.6.1. The distinguished component Nilp™°® plays an outsized role in this work.

Remark 2.5.6.2. We remark that (Pg, ) € Nilp lies in Nilp ® if and only if disc(Pg, ¢) = 0.
Assuming the center of G is connected, it additionally lies in N%lpKOS if and only if ¢1(Pg, ) =
c1(=p(Q))

2.6. Tempered D-modules.

1914 is an isomorphism on tensoring with Q, and A is of course torsion-free.
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2.6.1. Local formalism. Fix z € X (k) a point. Let U{th denote the spherical Hecke category based
at this point.

For D be a module category for P, We refer to [Ber3] §2 for a definition of the categories
Dr-anti-temp and DTMP. our notation is the same as [Ber3] §2.4.1, except that we include the
dependence on the point z in the notation. We remind that D* anti-temp C P js a certain full
subcategory, and the embedding admits a left adjoint. Then D* *™P is the quotient D /DT~ anti-temp
in DGCateont; the projection D — DT WP admits a fully faithful left adjoint.

2.6.2. Global setting. The above discussion applies in particular for D = D(Bung).

The main result of [FR] asserts that D(Bung)* 28 tmP and D(Bung)® *™P are independent of
the choice of z (in a strong sense). Therefore, we often write D(Bung)*™ *™P and D(Bung)'*™P
to indicate this category.

On the other hand, we sometimes include the point x in the notation when we are performing a
particular manipulation at the point.

We refer to objects of D(Bung)® P as anti-tempered D-modules on Bung, and objects of
D(Bung)*™P as tempered D-modules on Bung.

Although we can think of D(Bung)™™P as a subcategory of D(Bung) (via the left adjoint
referenced above), we generally consider it rather as a quotient category. Roughly speaking, the
quotient functor is better behaved.

2.7. Normalizations regarding exponential sheaves and characters.

2.7.1. We let exp € D(A') denote the exponential D-module, normalized to live in cohomological
degree —1, i.e., the same degree as the dualizing sheaf wa1. This object is a multiplicative sheaf
with respect to upper-! functors.

2.7.2. At various points in the text, we consider characters ) : N — Gy, or loop group analogues

o

with NV replaced by I (the radical of Iwahori) or the loop group N(K). These are always assumed
to be non-degenerate in the appropriate sense. Precisely:

e For N, the map Lie(y)) : n — k should send each Chevalley generator e; € n (i € Ig) to a
non-zero number.

e For I, the map I — G, should be the composition of the previous non-degenerate character
N — G, with the projection I >N (so this is non-degenerate in the standard Whittaker
sense, but not the affine Kac-Moody sense).

e For N(K), the map N(K) — G, should have conductor 0 and be non-degenerate in the
standard sense.

For Y with a G-action, we write D(Y)V'¥ C D(Y) to mean the category of D-modules that are
twisted N-equivariant against 1'(exp); similarly for I and N(K).
Part 1. Singular support and temperedness

3. IRREGULAR SINGULAR SUPPORT IN FINITE DIMENSIONS

In this section, we study a version of irregular singular support for G-spaces. Our main result is
Theorem 3.1.2.1, which we prove by reduction to [Los].
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This material is used in §4, and may safely be skipped at the first pass.
3.1. G-irregularity.

3.1.1. Let Y be an algebraic stack locally of finite type and equipped with a G-action.
We obtain a moment map u : T*Y — gV ~ g. We define:
Dg-irreg(Y) = anl(gmeg)(ld)'

In other words, a D-module F lies in Dg_ireg(Y) if for every point (y,&) € SS(F), u(y,§) is an
irregular element of g.

We let Shvgirreg(Y) == Shv(Y) N D irreg (Y)-

Remark 3.1.1.1. We use the notation G—irreg here rather than simply irreg to reserve the latter
for the global context considered in §4.

3.1.2. We can now state:

Theorem 3.1.2.1. Let Y be an algebraic stack locally of finite type with a G-action. Then the
Whittaker averaging functor:

vw
Shvaimes (W) — D(Y)E~ 25 py)Nv

1s identically zero.

3.2. A statement for g-modules. Below, we fix a G-invariant isomorphism g ~ g* for conve-
nience.

3.2.1. Singular support. Let M € g-mod” be finitely generated. Recall that we may choose a good
filtration on M (relative to the PBW filtration on U(g)); the reduced support of its associated
graded is a well-defined closed conical subscheme SS(M) C gV ~ g, which we call the singular
support of M. We remind that this construction is often instead called the associated variety of M.

3.2.2. Let Z(g) C U(g) denote the center, and let xo : Z(g) — k be the homomorphism defined
by the trivial representation of g.>° Let U(g)o = U(g)/U(g) - Ker(xo), so U(g)o is quotient of U(g)
whose modules of those g-modules with the same central character as the trivial representation.
We sometimes use the notation g-mody to denote the DG category of U(g)o-modules.

Recall that U(g)o carries a filtration induced from the PBW filtration, and gr, U(g)o = I'(N, Ox).
Therefore, for any M € gfmodé9 finitely generated, we have SS(M) C N C g.

3.2.3. Whittaker localization. Note that:
Hom¢_mod(g-mod, D(G)N¥) ~ D(G)V¥)(Gw) = g-mod™¥ ~ Z(g)-mod
where in the last equality we have used Skryabin’s theorem. We let:
Loc? : g-mod — D(G)M¥

denote the G-equivariant functor corresponding to Z(g) € Z(g)-mod under the above identification.
It is not hard to see that Loc¥ is t-exact up to shift, but we do not use this result below. Explicitly,

20In what follows, all our results about g generalize to the case where x( is replaced by any central character
X : Z(g) = k. We use xo to simplify the notation, and to focus on our case of interest.
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the fiber of Loc¥(M) at 1 € G is computed via Lie algebra homology C,(n, M ® 1), and its fiber
at g € G is computed similarly but we first twist the action of g on M via Ady : g =g

We also use a variant of this construction; let:

Locg’ : g-mody — D(G)N

denote the composition:

¥
g-mody — g—mod Loc?, D(G)NY.

Equivalently, this is the G-equivariant functor corresponding to:

k € Vect ~ gfmodév’w ~ Hom¢-mod(g—modo, D(G)N’w)-

3.2.4. We will show:

Theorem 3.2.4.1. Suppose M € gfmod(? is a finite length module with SS(M) C Nirreg.m Then
Locy (M) =0 e D(G)NY.

Remark 3.2.4.2. Probably the theorem is true for finitely generated modules, not simply finite
length ones. The restriction to finite length modules corresponds to our reference to [Los].??

3.2.5. Preliminary comments. Our proof of Theorem 3.2.4.1 relies on some results about primitive
ideals. We collect some results from the literature here.

First, we have the following theorem of Loseu:

Theorem 3.2.5.1 (Loseu, [Los|). Let M € g-mody be a faithful U(g)o-module; i.e., suppose that
the map U(g)o — Endy, o (M) is injective. Then SS(M) NN # 0.

Indeed, this is a special case of [Los] Theorem 1.1 (1).

Remark 3.2.5.2. In our setting, we can actually avoid the strength of Theorem 3.2.5.1. Namely,
suppose M € g-mod; has the property that the D-module F := Loc(M) € D(G/B) corresponding
to M under Beilinson-Bernstein is holonomic; the reader will readily see that we only apply the
theorem in this case. Under these hypotheses, the theorem is more elementary.

Namely, as in §3.3.5, SS(M) is the image of SS(F) along the Springer map 7 : T*(G/B) = N — N.
By [Los] Lemma A.1 (ii) (which is elementary), m(SS(J)) N O is isotropic for every nilpotent
orbit O C N. In particular, this intersection has dimension < %dimO < %dim N, with the latter

inequality being an equality only for O = N.

We see that if SS(M) NN = (), then dim(SS(M)) < 1 dim N. However, [KL] Theorem 9.11 (due
to Gabber) and Proposition 6.6 assert that 3 dim SS(U(g)o/ Ann(M)) < dim SS(M), so we see that
Ann(M) # 0 under the above hypotheses.

21Here we remind that SS(M) is by definition reduced; so e.g., such an inclusion can be checked on field-valued
points.
228ince the first version of this paper appeared, this question was settled affirmatively in [DF] Theorem 3.0.2.1.
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3.2.6. Next, let Mg € g—mod(? be the object corresponding to:
k € Vect ~ gfmodév’w C g—mody.
Explicitly, we have:

My = indd(y) © k.
Z(g)

Here 1) € n-mod” denotes the 1-dimensional module defined by the character 1, and we consider
k as a Z(g)-module via yg.

We recall the following basic fact:
Proposition 3.2.6.1 (Kostant, [Kos| Theorem D). Mg) is a faithful U(g)o-module.

We deduce:

Corollary 3.2.6.2. Any non-zero object of gfmod(()N’w)’O

is a faithful U(g)o-module.

Indeed, by Skryabin’s equivalence, such an object has the form V ® Mgp for some non-zero vector
space V', so Proposition 3.2.6.1 yields the assertion.

3.2.7. Proof of the theorem for Lie algebras. With the preliminary results above completed, we are
now in a position to prove the theorem.

Proof of Theorem 8.2.4.1.
Step 1. We are obviously reduced to the case where M is a simple module (with SS(M) C Nirreg)-

Let I C U(g)o be the two-sided ideal annihilating M. By Loseu’s theorem (Theorem 3.2.5.1),
I #0.Set A=U(g)o/I; this is a classical associative algebra.

Step 2. Note that A receives a Lie algebra homomorphism i : g — A via g — U(g) — U(g)o — A.
Moreover, the adjoint?® action of g on A integrates to an action of G on A; indeed, this follows
from the corresponding property of U(g).

In other words, A receives a canonical Harish-Chandra datum for G.

It follows that there is a (strong) G-action on A-mod such that the forgetful functor A-mod —
g—mody is G-equivariant.

Step 3. Next, we claim that A-mod™¥ = 0.

It suffices to check this at the abelian categorical level (the t-structure on A-mod™*¥ is obviously
separated).

Any object of A-mod” maps to a non-faithful module of U(g)o (as I # 0). Therefore, any object

of A-mod™¥® maps to an object of gfmodé\w’v that is not faithful as a U(g)o-module; by Corollary

3.2.6.2, the object must be zero.
Step 4. Finally, we note that (as in §3.2.3), we have:
Hom¢ mod (A-mod, D(G)V¥) ~ A-mod™¥ = 0.
Therefore, the composition:
A-mod — g—mody % D(G)N¥

23I.e., the action defined by the formula & x a := [i(§),a] for £ € g and a € A.
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is zero.

As M € gfmod(? lifts to A-mod" by definition, the result follows.

3.3. Proof of Theorem 3.1.2.1. We now prove the theorem. We proceed by steps.
Below, we fix F € ShvG_irreg(H)B

3.3.1. Reduction to the quasi-compact case. Note that the stack Y/G is a union of its quasi-compact
open substacks. Replacing Y by the preimage of each such open, we are reduced to the case where
Y itself is quasi-compact.

3.3.2. Reduction to the simple case. First, recall from [BBM] (see also [Ras2] Appendix A) that the
functor:

AvY : D(Y)E™ = Dy)NY

is t-exact up to shift. Therefore, as Shvg_imeg(Y)Z C D(Y)® is closed under truncations, we may

assume F € ShvG,irreg(H)B_’o.

Moreover, as Shvgimeg(Y)Z Y C Shv(Y)B ¥ is stable under taking subobjects, we may assume
F is also perverse (i.e., “small”) by quasi-compactness of Y. In particular, F has finite length.
Finally, we are clearly reduced to the case where F € ShvG,irreg(H)B_p is simple; we explicitly
remark that it is equivalent to say that it is simple in D(Y)Z ™%,

3.3.3. Reduction to the case where Y = G x Yo where G acts trivially on Yg. Consider G x Y as
acted on by G via the action on the first factor alone. Next, we have the G-equivariant map:

GxY 2,y
As act is smooth, act![— dim G is t-exact, conservative, preserves simples, and maps Shvg_irreg(Y)
to Shvgirreg (G % Y). By G-equivariance, act' commutes with finite Whittaker averaging.

Therefore, we are clearly reduced to case where Y has the stated form.
3.3.4. Reduction to the case Y = GG. Recall that we have Y = G x Yy as above.

Observe that Av}p(?) is a compact, holonomic object (because JF is). Therefore, it suffices to
check that for every field extension k’/k of finite degree and every pair (g,y) € (G X Yo)(k'), the

I-restriction of AV;’D(?) to (g,y) vanishes. Up to a finite extension of the ground field, we may
assume k' = k; we do so in what follows to simplify the notation.

id X1,
Let y € Yo(k) be fixed. Let i, : Spec(k) — Yo be the corresponding map. The map G Xy Gx Yo
is obviously G-equivariant (as G acts trivially on Yp), so we have:

(id xiy)' AvP(F) = Av{ (id i) (F) € D(G)VY.
Here we also remind that AV;’Z) equals AvY up to a cohomological shift, see [BBM] once again.

Now we claim:

Lemma 3.3.4.1. The object (id xi,)'(F) € Shv(G)B™ lies in Shvg_irreg(G)®

Clearly this result follows from the general result:
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Proposition 3.3.4.2 (Kashiwara-Schapira). Let Z1 and Za be smooth schemes, and let A C T*Z,
be closed and conical. Let f : Zg — Zo be a given map with Zs smooth (but f possibly non-smooth).

Then the functor:
(id x f)" : Shv(Z1 x Zg) — Shv(Z; x Z3)
maps Shvpxre2,(Z1 X Z2) to Shvpxr=2,(21 % Z3).
Proof. This follows immediately from the estimates®* on singular support of pullbacks from [KS]
Corollary 6.4.4.

O
Remark 3.3.4.3. One may also appeal to [Gin] in place of [KS]. In addition, we remark that the proof
of [BG1] Proposition 2.1.2 essentially (up to a quasi-projectvity assumption) shows more generally
that Shvg imeg is preserved under sheaf-theoretic operations for G-equivariant maps. Indeed, loc.

cit. considers a similar setting to ours, but with 0 € g replacing Njreg C g; more generally, the
argument in loc. cit. applies for any closed, conical, G-equivariant subscheme of g.

Remark 3.3.4.4. We remind that the results from [KS] and [Gin] fail for general holonomic D-
modules; regularity is crucial assumption.

We now continue with the reduction: by Lemma 3.3.4.1, (id xi,)"(F) € Shvgimeg(G)Z ™ ; there-
fore, if we know the result for Yy = Spec(k), we obtain Avip (id xiy)"(F) = 0, which yields the claim

for general Yo by our earlier discussion.

3.3.5. Proof for Yo = Spec(k). We will use Beilinson-Bernstein to reduce to Theorem 3.2.4.1.

We remind the setting: F € D(B~\G)" is a simple?® D-module on the flag variety with singular
support in:

j:fhrrcg = jA(I. J>\<f Nirrcg - ﬂ ~ T (B_\G)

where N is the Springer resolution of the nilpotent cone. We wish to show that:
Av}(F) € D(G)M
is zero (where (N, %)) invariants are taken for the left action).

We have a diagram:
D(B~

B\Gl\

g-mody Loc? (GYN.

that commutes up to a cohomological shift. Indeed, by G-equivariance of the functors involved, it
suffices to check that the images of the 4 D-module at the base point of the flag variety are mapped
to the same object (up to shift), and this is straightforward.

24We fill in some details in the reference here, referring to [KS] for notation.

In our setting, for § € Shva =z, (Z1 X Z2), recall that [KS] Corollary 6.4.4 (ii) bounds SS((id x £)'(G)) by something
denoted (id x f)¥(A x T*Z2). It is straightforward to see (id x f)*(A x T*Zs) C A x T*Zs; e.g., one can reduce to the
case where f is a closed embedding and then the description from [KS] Remark 6.2.8 (i) is convenient.

25At this point, regularity, and even holonomicity, are no longer essential hypotheses.
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Now for our 7, let M := I'(B~\G,F) € g-modg. By the above, it suffices to show that Loc¥ (M) =
0.

By Beilinson-Bernstein localization [BB1], M € gfmodg is simple. Therefore, by Theorem 3.2.4.1,
it suffices to show that SS(AM) C Nirreg. This is a standard compatibility: by the Corollary in §1.9
of [BB2], SS(M) is the image of SS(¥) along the projection map:

N — N.
4. IRREGULAR SINGULAR SUPPORT ON Bung

4.1. Formulation of the main result. Let Dieg(Bung) = Dhiggs,, . (Bung); see §2.4.2 for
'Birreg
the notation. We similarly have Dy, (Bung) = Shvyip,,,., (Bung).

The purpose of this section is to prove:

Theorem 4.1.0.1. Any object of Shviyp,,.., (Bung) is anti-tempered.

We will prove this result by reduction to Theorem 3.1.2.1.

Throughout, we remind that we have fixed a point z € X (k). We let K denote the field of Laurent
series based at x and O C K the subring of Taylor series. We sometimes use t for a coordinate at
x. We let e.g. G(K) and G(O) denote the loop and arc groups for G. We freely use the formalism
of (strong) loop group actions on objects of DGCatcont.

Remark 4.1.0.2. Using the full results of this paper, we were able to show Diyreg(Bung) € D(Bung )2nti-temp,
We conjecture that this is an equivalence for any G. This is a folklore statement for G = PG Lo;
see [Ber3] Corollary 4.2.6 for a variant of the assertion in this case.

4.2. Anti-temperedness and Whittaker averaging. We have the following general character-
ization of anti-temperedness.

Suppose the loop group G(K) acts on € € DGCatcont. Recall that we have the anti-tempered
subcategory @G(0)z-anti-temp — RG(0) (f §1.2.8.

By [Ber3] Theorem 1.4.8, we have:

Lemma 4.2.0.1. CC(O)w-antitemp ¢ ype Lernel of the Whittaker |-averaging functor:

Avf/)
eYO) Ly whit(@).

Remark 4.2.0.2. We make a brief philosophical point. Ultimately, we are interested in Whittaker
coefficients of tempered D-modules on Bung. If we think heuristically of Bung as a double quo-
tient G(k(X))\G(A)/G(O), this involves integrating on the left with respect to N(A) (twisted
by a character, of course). On the other hand, temperedness involves the derived Satake action,
which occurs on the right. Therefore, when we apply the present lemma to € = D(Bunlével’x), the
Whittaker averaging in question should be thought of as occurring on the right. Moreover, the
Whittaker integral on the right occurs at a single point, while the one on the left involves all points
simultaneously.

Ultimately, the reader may think that singular support translates between left and right Whit-
taker conditions.
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4.3. Baby Whittaker. Next, we record the following well-known result.
Let I C G(O) (resp. I™) denote the Iwahori subgroup corresponding to B € G (resp. B~ C G).
Let I denote the prounipotent radical of I. Let I; = Ad_ s ) and let I = Ad_j)(I7). We

abuse notation in letting i) denote the restriction of the canonical character of N (K ) to L. Finally,
we let K1 denote Ad_ ;) applied to the first congruence subgroup of G(O); note that Xy = I;1 N1 .

Note that I;/X, = N and I /X = B~

Following [Rasd], for € € G(K)-mod, we use the notation Whit(C) := CNIE)Y and Whit=1(@) =
Chv . We let L!LOO : Whit(C) — Whit=!(€) denote the x-averaging functor.

Finally, we can state:
Lemma 4.3.0.1. Let ¢ € G(K)-mod be given. Then the functor L!LOO : Whit(€) — Whit=1(C)

admits a fully faithful left adjoint 11 1 ; moreover, there is a commutative diagram:

¥
eE(0) Oblv, @I AV, el (€18 2, (eX)Ne — whit!(©)

Whit(@).

Proof. The existence of the fully faithful functor ¢; o is a special case of [Ras4] Theorem 2.3.1.
The existence of the commutative diagram is standard: it follows from the fact that the functor

Av, : @7 — @l is an equivalence (with inverse the natural l-averaging functor).
O

Combining this result with Lemma 4.2.0.1, we find that CG(O)w—anti-temp jg the kernel of the
composition:

EG(0) Avx, Av. el Avy’ ;(:311,111 (4.3.1)

4.4. Parahoric bundles. Let P C G(K) be a compact open subgroup. Let BunZ V! := Bun 16"61 “/P.

For example, Bung(o)f1

of finite type.

Remark 4.4.0.1. We care about exactly four cases: when P = G(O), I~, I{, or Ky. If p is an
—1vl

= Bung. We remark that BunP M ig always an Artin stack locally almost

(mtegral) cowelght for G, e.g. the subgroups I~ and I; are conjugate, so we can identify Bun

and BunG o l; in general, the latter can be thought of as a twisted form of the former, with only
a mild technicality separating them.

4.4.1. Ramified Higgs bundles. Let P be a compact open subgroup as above. Let (Pg,7) € BunP vl

be a point (the notation indicates that Pg is a G-bundle on X \ z and 7 is a reduction of the G( )-
bundle P¢ls to P).

vl

The standard Serre duality argument shows that the cotangent space T, (* )BunG M consists

of Higgs bundle p € I'(X \ z, gp, ® Q%) satisfying the condition:

(Pa, 7, ¢lg, ) € Lie(P)*/P C g((t))dt/P = (1))’ /P.
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We refer to such data as a (P-)ramified Higgs bundles.

4.4.2. We say that such a ramified Higgs bundle is irregular if the Higgs bundle (Pg|x\z,®) on

X\ z is so. Note that irregular ramified Higgs bundles form a closed conical substack of T* Bungf A

Therefore, we obtain the categories Dirreg(Bung* 1"1) and Shvirreg(Bungf l"1) as in §4.1.

4.4.3. Compatibility with the Hecke action. Now suppose P, P, C G(K) are a pair of parahoric
subgroups. We can form the category D(P;\G(K)/Ps) of (P, Py)-equivariant D-modules on G(K).
There is a natural convolution action:

D(Pl\G(K)/P2) ® D(Bun227lV1) N D(Bunglflvl).
Proposition 4.4.3.1. The above convolution functor induces a functor:

D(P\G(K)/P2) @ Disreg(Buni?z ™) — Dipyeg(Bungt ™).

In other words, in the parahoric setting, convolution preserves irregular singular support.

The proof of the proposition is identical to the proof of the Nadler-Yun theorem in [GKRV]
Theorem B.5.2; we particularly refer to loc. cit. §B.6.6. We remark that the argument?® in loc. cit.
uses nothing about nilpotence. To be completely explicit: the argument in [GKRV] applies for any
closed G-invariant conical subscheme A C g, where in loc. cit. A = N, and for us here, A = gireg-

Finally, we remark that only P, needs to be parahoric; we need ind-properness of G(K)/P, to
control the singular support of the convolution.

4.5. Mixing the ingredients. We now prove Theorem 4.1.0.1.

4.5.1. Step 1. By (4.3.1), our goal is to show that the composition:

Shviitpy,,e (Bung) € D(Bung) — D(Bungfh/l) = D(Bungérh’l)B_ — D(BungerI)N’w

is zero.

By Proposition 4.4.3.1, the first functor maps Shvyiy,,., into Shvirreg(Buné_71V1). (The right

hand side may be replaced with ShVNilpmeg just as well, but this level of precision is not needed
below.)

4.5.2. Step 2. Consider Buancl_IVI as an algebraic stack acted on by G. The moment map:
p:T*Bung M = gV~ g
sends a ramified Higgs bundle (P, 7, ¢) to t Ad;)(¢) mod ¢, where we note that ¢ € ¢~ Ad_ ) g[[t]dt /K.
Because irregularity is a closed condition, we see that any irregular ¢ maps into girreg-
Therefore, it follows that we have an embedding:
Shvirmg(BungerI) C ShvG,irreg(Bunjé171V1).
Here for clarity, we say that the left hand side is defined in §4.4.2, and the right hand side is defined

using the G-action as in §3.1.1.

26To be clear: we mean when the point is fixed, as in §B.6.6 in loc. cit. What follows there, regarding what is
denoted £x in loc. cit. and concerns variation in the point z, crucially uses nilpotence. But this is irrelevant for our
purpose.
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4.5.3. Step 3. We now conclude the argument.

By the above, we have a composition:
X -Wvl\B— K -Wvl\B— _
ShVNitpiyree (BUNG) — Shvipreg (Bung! )BT C ShVGireg(Bung' )P — D(Bunjcg1 W Now

and the latter functor is zero by Theorem 3.1.2.1. This concludes the argument.

Part 2. Microlocal properties of Whittaker coefficients

5. BACKGROUND ON COEFFICIENT FUNCTORS

In this section, we review the classical geometric theory of Whittaker coefficients from [FGV1]
and establish notation. This section houses no new results.

5.1. Moduli spaces.

1 1
5.1.1. We fix Q% a square root of the canonical sheaf on X. We obtain 5(Q% ) :== (2p)(2%) € Buny.
We let Bun®} denote the fiber product:

Bun® := Bunp x Spec(k)
Bunp

where Spec(k) — Buny is p(Q%).
5.1.2. There is a standard character:

¥ : Bun% — AL
We refer to [FGV1] §4.1.3 for its definition.

5.1.3. We also denote the canonical projection by:

p: Bun% — Bung .

5.1.4. More generally, let D be a A-valued divisor on X.

We have a corresponding point Ox (D) € Bunyp: it is characterized by the fact that for every
weight A : T'—= Gy, A(Ox (D)) = Ox(A(D)), where we note that A(D) is a usual (Z-valued) divisor
on X.

For a T-bundle Pr, we let Pr(D) denote the image of (Pr,Ox (D)) under the multiplication
Buny x Buny — Bunry.

We let Bun%(D) denote the fiber product:
Q(D)

Bun, "’ :=Bunp x Spec(k)

Bunp

where this time we use the T-bundle p(Q%)(D).

5.1.5. For D a A*-valued divisor, there is a canonical character:

Up : Bun™?) 5 AL

We again refer to [FGV1] §4.1.3 for its definition.
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5.1.6. In this context, we let:

Q(-D)

pp : Bun — Bung

denote the canonical projection.

5.1.7. Large divisors. For later use, we record the following bounds.
Definition 5.1.7.1. We say D is sufficiently large if deg(D) € At satisfies:

(deg(D),a) > g—1 (5.1.1)
for every positive?” root o > 0. (Here g is the genus of X.)

By reduction to the case of G, it is immediate that:

Lemma 5.1.7.2. For D sufficiently large, Bun%(fD) is an affine scheme.
5.2. Coefficient functors.

5.2.1. The primary Whittaker coefficient. We define the primary Whittaker coefficient functor is
the functor:
coeff : D(Bung) — Vect

defined by:

!
F = Car (Bunf, p'(F) © ¢'(exp)) [~ dim Bunf}].

Remark 5.2.1.1. We include the above shift in the definition to make various formulae work out
more nicely.

Remark 5.2.1.2. The above functor is usually called the first Whittaker coefficient. The terminology
is borrowed from modular forms, where the above corresponds to the term aj, cf. §1.1.1. This
multiplicative normalization can be confusing in the geometric context, where zeroth Whittaker
coefficient would be the more natural convention (since we index by divisors rather than their
norms).

5.2.2. Other Whittaker coefficients. Now suppose D is a AT-valued divisor on X. Define the functor:
coeffp : D(Bung) — Vect

by the formula:
!
F— Cyr (BunQ(fD), pH(F) ® wb(exp)) [— dim BunQ(fD)].

5.3. The Casselman-Shalika formula. We now recall the primary classical result in the subject.

Let D be a AT-valued divisor on X as above. There is an associatefi object VP of Rep(@)Ran; if
D=3 \; - x; for some finite set of distinct points z;, then VP = @V = @ Oz,

We recall the following result from [FGV1], which is a geometric analogue® of the Casselman-
Shalika formula from [CS].

2"More economically, this condition for a simple obviously implies it for a positive.
283ee [FGKV] for more discussion of the relationship between the results of [FGV1] and [CS].
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Theorem 5.3.0.1 (Frenkel-Gaitsgory-Vilonen). There is a canonical isomorphism of functors:

coeff p ~ coeff(VP x —) : D(Bung) — Vect.

Proof. For the sake of completeness, we include an argument deducing this result from [FGV1].

As above, suppose D = Y"1 | A - z;. Let x denote the collection of points z;. As in [FGV1], we
have usual the ind-stack:?

B ,00-X
Bun,— .

There is a natural map peo.x : Bun%oo'x — Bung. There is a natural Hecke action of Rep(G)®™ on
D(Bun%oo'x) compatible with the Hecke action on Bung (corresponding to the points 1, ..., x,).
We also note that VP can evidently be considered as an object of Rep(G)®™.

There are natural locally closed embeddings:

. Q B Q,00-x
J : Bunly — Bunjy

(=D) Q,00x

ID: Bun? — Bunjy,

compatible with the maps to Bung.

Let VPV = v=wo(D) he the dual to VP in Rep(G)®". By [FGV1] Theorem 4 and Theorem 3 (2),
we have:3°
VPV s g ar (1 (exp)) [~ dim Bun$] =~ 7p . ar (¥ (exp))[— dim BunQ(fD)].
Therefore, for F € D(Bung), we obtain:

!
coeff p(F) := Cqr (Bun%(_D)a P (F) ® 1[J!D(exp)) [— dim BunQ(_D)] —

— Oox ! . _
Car (BUn%™™ . (F) ® 11 nar (b (exp))) [— dim Bunl )] =

!

Car <Bun%oo'xa Poox (F) @ (VP *J*,dR(¢!(eXp)))> [~ dim Buny] =

o ! .
Car (Bun%’oo , (VP 5 pl o (9)) ®j*,dR(1/J!(eXp))) [— dim Bun%] =
o ! _
Car (BAEE™, ple (V2 % 5) & . an (4 (exp))) [ dim Bung)] =
!

Car (Bun®, p' (V2 x 9)) @ g..ar (¥ (exp))) [~ dim Bun$] = coeff (VX x F).

O

Remark 5.3.0.2. The above assertions admit natural generalizations where the divisors are along
to vary in moduli, even over Ran space; we omit the statement here as we do not need it.

5.4. More notation. In the remainder of this section, we briefly introduce more notation.

291t is defined in [FGV1] §2.3, where it would be denoted x’OoBun‘;\,(Q%().

30[n fact, there is a sign choice to be made once and for all in defining the Hecke action on D(Bung); roughly
speaking, the difference is whether we think of the Hecke category as acting naturally on the left or right, where in
the latter case we use the inversion automorphism to change a right module structure to a left module structure. We
have implicitly pinned down this choice in the statement of the formula. By contrast, the reader who looks in [FGV1]
will find statements for each of the two possible choices.
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5.4.1. The Poincaré sheaf. We let Poincy € D(Bung) be the object corepresenting coeff. Explicitly,
we have:

Poinc; = pi((—1p)* (exp[—2]))[dim Bun%]. (5.4.1)
In other words, we take the character sheaf (or its inverse) on Bun%, cohomologically normalized
to be perverse, and !-push it forward to Bung; this makes sense by holonomicity.

Convention 5.4.1.1. We use the subscript ! to remind that a lower-! functor appears in the formation
of Poinc. We use similar notation in related settings without further mention. We remark that coeff
would be denoted coeff, in this regime; we omit the x for brevity, given how often the coeff functor
is used in this work.

5.4.2. The !-coefficient functor. Let Dy (Bung) € D(Bung) denote the category of (ind-)holonomic
D-modules on Bung, i.e., D-modules § € D(Bung) such that for any 7 : S — Bung with S affine,
7 (F) € D(S) is (ind-)holonomic. We remark that Shvy,(Bung) € Dyoi(Bung).

Then we have a functor:

coeff) : Dyoi(Bung) — Vect

F > Car o (Buny, p* (%) ® ¥*(exp[—2]))[dim Bunf}].

In other words, coeff) is the Verdier conjugate to coeff. That is, we have:

Lemma 5.4.2.1. For F € Dy (Bung) be locally compact with Verdier dual’! DV'4e'F ¢ Dy (Bung),
we have:

coeff (F) = coeff;(DVerdier )V,

5.4.3. Similarly, we have functors:

coeffp ) : Dyol(Bung) — Vect.

The Verdier dual to Theorem 5.3.0.1 asserts:
Corollary 5.4.3.1. There is a canonical isomorphism of functors:

coeffp 1 ~ coeff!(VD * —) : Dypo(Bung) — Vect.
This follows from the good properties of Hecke functors: see [AGKRRV3] §1.2.3.
6. THE INDEX FORMULA

6.1. Statement of the theorem.

31Unlike e.g. [AGKRRV2], we consider Verdier duality as mapping locally compact D-modules on Bung to locally
compact D-modules; it can be computed smooth locally by usual Verdier duality on schemes. By contrast, loc.
cit. considers a smarter construction, sending compact D-modules to compact objects of D(Bung)Y. The smarter
construction from loc. cit. recovers ours after applying the functor Id"*V® : D(Bung)Y — D(Bung) from loc. cit.
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6.1.1. Kostant invariant. Let F € Shvy;,(Bung )t

Let Irr(Nilp) denote the set of irreducible components of Nilp. Recall that F has a characteristic
cycle:

CCFH) = D caglal

a€lrr(Nilp)
for c, 5 € Z; here [a] is the class of the component « in the group of cycles.®?
For o = Nilp¥°®, we use the abbreviation:
CKos,J = CnjlpKos 5 € Z
for the multiplicity of the characteristic cycle of F at the Kostant component (see §2.5.6).

6.1.2. Index formula. For F constructible as above, we may form coeff(F) € Vect. Because JF is
constructible, this object is compact, so it has a well-defined Euler characteristic x(coeff(5)) € Z.

The purpose of this section is to prove the following result.

Theorem 6.1.2.1. There is a sign € = eg,x € {1,—1} (depending only on G and the genus of the
curve X ) such that for F € Shvyg, (Bung)™™, we have the equality of integers:

X(Coeﬂ‘(?)) = € CKos,7F-

Specifically, the sign € is:
e = (_1)dimBunG.

We will prove this theorem using filtered D-modules, as is natural for a problem on characteristic
cycles.

The argument we give passes through D-modules with filtrations that are not good, so is unlikely
to have an easy analogue in other sheaf-theoretic settings.

6.2. Filtered D-modules on stacks.

6.2.1. We briefly develop the theory here, for lack of a good reference. Let Y be a smooth algebraic
stack below.

6.2.2. Recall from [GR3] Example 2.4.3 that there is a canonical prestack®? Yar,n with a map
7 Yarsn — A}/Gy, so that m71(1) ~ Yar and 771(0) = By(T'(Y)})) is the classifying stack for
the tangent space of Y formally completed along its zero section. Filtered D-modules on Y are
by definition ind-coherent sheaves on Yqr p; we denote the category by Fil D(Y). For a filtered
D-module F,F € Fil D(Y), its underlying object F is the fiber at the open point 1 € A}/G,,
using the equivalence (or definition) IndCoh(Y4qr) ~ D(Y). We may form the associated graded
gre F € QCoh(T*Y) by taking the fiber at 4 = 0 and applying Koszul duality®* IndCoh(By(T(Y)})) ~
QCoh(T*'j).35 We remind that T*Y is a derived stack in general. For Y a smooth scheme, the
comparison results in [GR3] show that the above notion corresponds to the usual notion.

32Technically7 our group of cycles is completed here: it is the inverse limit over U of free abelian groups on cycles
in T*U for U C Bung a quasi-compact open. In particular, the infinite sum displayed above has a clear meaning.

331t is denotes (Ydar )scalea in [GR3].

348moothness of Y is needed here.

35For a slower introduction to this circle of ideas, we refer to [Ras4] Appendix A.
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6.2.3. For a morphism f :Y — Z, we form the usual correspondence:
T*Z xY
Z
N
Y T Z.

Then for F € Fil D(Y) (vesp. § € Fil D(2)), fvar(F) (resp. £(3)) inherits a canonical filtration,
and there are natural identifications:

gle f*,ren(s’t) =~ W*Df*(gr. EF)
gry f1(9) ~ D f.r " (gr, ).

We remark that as Y and Z are smooth, 7 is a quasi-smooth morphism, so 7" is defined. In the
above, fien is the renormalized de Rham pushforward from [DG1]. We remind here that renor-
malized pushforward coincides with de Rham pushforward for morphisms representable in stacks
with only unipotent stabilizers; this is the only case in which we will consider this construction.

(6.2.1)

6.2.4. Good filtrations. We say a filtration FoF on F € D(Y) is a good filtration if for any p: U — Y
with p smooth and U affine, the induced filtration on p'F is a good filtration (equivalently: the
filtration is bounded from below and gr, p'F € Perf(T*U)). By (6.2.1), this is equivalent to the
filtration being bounded from below with gr, ¥ € Coh(7™Y).

Clearly if F admits a good filtration, it is locally compact (cf. §2.2.2). Conversely, we have:

Lemma 6.2.4.1. Suppose Y is QCA and F € D(Y)" is locally compact. Then F admits a good
filtration.

Proof. By [DG1] Theorem 0.4.5, there exists § € Coh(Y)" and a map ind(G) — F € D(Y) that is
an epimorphism on HY (where ind : IndCoh(Y) — D(Y) is the D-module induction functor). We
immediately see that ind(§) admits a good filtration, which we denote by F, ind(G). By adjunction,
we then obtain a map:

a: Fyind(§) — F* € Fil D(Y)
where the right hand side denotes F with the “constant” filtration (informally: F;F = F for all
ieZ).
Now observe that Fil D(Y) has a natural ¢-structure such that the forgetful functor to IndCoh(Y x
Al/G,,) is t-exact.0

We can then form the image of H%(c) in Fil D(Y)". By exactness of the functor Fil D(Y) — D(Y)
(forgetting the filtration), H(«) is a filtration on F. It is immediate to see that the induced filtration
on ¥ is good (and in fact: gr, F lies in degree 0, i.e., it is a filtration in the abelian categorical sense,
not just the derived categorical sense).

O
6.3. Twisted Hodge-de Rham spectral sequences.

36This t-structure may be constructed directly from the case of smooth schemes. Alternatively, one may observe
that Y x A}/G, — Yar,s has a connective relative tangent complex; therefore, by [GR3] §9, the corresponding monad
on IndCoh(Y x A}/G.,,) is right t-exact, and the claim follows on general grounds.
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6.3.1. We now discuss Hodge filtrations adapted to exponential cohomology. As the proof shows,
the construction is by the (standard) Kazhdan-Kostant technique. Unlike usual Hodge filtrations,
there are subtleties about convergence in the twisted setting.

Lemma 6.3.1.1. Fiz an integer r > 0. Below, we always consider A' as equipped with the G,,-
action that is the rth power of the action by homotheties.

Let F,F € Fil D(AYSG™¥ be q filtered D-module on A with a compatible Z-grading.

!
(1) Cqr(A', F @ exp) € Vect has a canonical filtration FXX such that:

!
gr¥8 Cyr(AL, F @ exp) ~ T(AL, dt* gr, F)
where dt is considered as a section A — T*Al and dt* indicates pullback along this mor-
phism.
(2) Observe that T'(A',0%(gr, F)) carries a natural grading coming from that of FoF. We write
the ith graded piece of this complex as:

T(AY0%(gre(F))):-
We sometimes refer to this as the secondary grading, which should not be confused with the
grading greJ = ®; gr; J.
Suppose that:
o The filtration F F is bounded from below, i.e., F;F =0 for i < 0.
e The secondary grading is bounded from below, i.e., there exists an integer N such tha

I'(A',0%(gr, 9)), =0 (6.3.1)

t.'37

foralli < —N.
Then the the filtration FXX is bounded from below, i.e., we have:

!
FER Cr(AL, F®@exp) =0 (6.3.2)
fori1 < 0.
(8) In the setting of (2), suppose instead that:
o The filtration F¢F is bounded from below.
e For every integer n, the second grading on:
777" (AL, 0%(gr, 9)) (6.3.3)
is bounded from below, i.e., for i < 0 (with bound depending on n), we have:
" (AL, 0%(gr, F)), = 0.
K

o arkK s bounded from below, i.e., for i < 0, we have:

!
griE Cqr (A, F @ exp) = 0.
Then the same conclusion holds: the filtration FXK is bounded from below.

Proof. The existence of the filtration in (1) is part of the general formalism of Kazhdan-Kostant
filtrations, cf. [Ras4] §A.5. For the reader’s convenience, we make this explicit in our specific setting.

Namely, we consider J as a left module over the Weyl algebra, which has generators ¢ and 0;. We
normalize signs so that deg(t) = r and deg(d;) = —r. We also write ¢ and 0 for the corresponding

37 fact, the proof shows a weaker condition suffices: we can assume F(Al7 0" (gr; ?))1 =0 for every j < —i — N,

remarking that gr; = 0 for j < 0 by assumption on the filtration on F. But in examples, it appears this condition is
always verified in the form stated in the lemma.
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functions on T*A!, expecting confusion will not arise. Ignoring higher coherences (which are not
actually needed for us), that F is a weakly Gy,-equivariant filtered D-module means the following.
First, 3 has a grading:

F= a9
JEZ

This grading is compatible with the filtration in the sense that it refines to gradings:
FF = & (F9);.
JEZ

Moreover, the actions of ¢t and 0; on JF refine to maps:
t: (FF)j = (FF)jtr
O (FiF)j = (Fip1F)j—r-

!
Note that Cqr(F ® exp) is explicitly realized as the homotopy cokernel (i.e., cone):

Coker(F 5, F).

The Kazhdan-Kostant filtration is defined by the following formula:

| —i
FIN Car(J @ exp) = Coker ( @ (Fjizg Ty *—

& i iz Ta)-

q€EZ

Here we note that 0y maps (FLZ-;QJS'")Q to (FL

rightmost term.

i_TqufT")q_r, which is one of the summands of the

We comment briefly on the definition. One can rewrite:
& (F)i—q | T
qGZ( =1 )q
as:

colim F,F 6.3.4
(p,Q)GZQ,errqgi( P )q ( )

to remove the floor function; here the indexing category is a poset with (p,q) < (p/,¢') & p <
p',q = ¢'. We also note that for r = 1, the above formula takes the simpler form:
! 8 —i
FI Can(F @ exp) 1= Coker & (Fiy),q imiiN © (Fi-gT)q).
qe qe

We clearly have:

! .
grif Cqp(F @ exp) = Coker (@ (griq ), KN (grimg F)q) =
q€i+rZ r q€i+rZ r

Oy —id
Cok Ficrp — Fir
oker (pEEBZ (grp ) P pGEBZ(grp ) p)

so that:
! —i
gri¥K Cyr(F @ exp) = Coker (gro F Gid, gr,F) = (A, dt* gr, F)
yielding (1).

We now turn to the question of spectral sequence convergence, i.e., to (2) and (3). We focus first
on (2).
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First, we note that we can shift the filtration to assume that F;J = 0 for j < 0. Similarly, we
can shift the grading to assume the integer N equals zero. We will then prove that (6.3.2) holds for
1< =T,

Observe that in the above notation, (6.3.1) explicitly says that:
O« (gr; F)i — (141 F)ir (6.3.5)
is an isomorphism for ¢ < —IN = 0.
Now fix an index 7. We define a further filtration:
FiFFS Cap(F ® exp)
by the formula:

= KK ! , B—id
FF** Car(F ® exp) = Coker ( quBZ (Fmin{ijFTqJ}EF)q =/ q§Z(Fmin{j+17Li_TqJ}?)q) =

Coker colim F,3), — colim ETF
((p,q)ez2,rp+qﬁi( »Fa (p,q)GZQ,TerqSi( b )q)
P<j p<j+1
where the last expression is as in (6.3.4). This is clearly a filtration, i.e., the colimit over j yields

!
FRX C4r(F @ exp). Moreover, the above term vanishes for j < —1 as the filtration on F is non-
negative. Therefore, it suffices to show that when i < —r, the structure maps:

~ ! - !
Qg Fj_1FiKK Car(F ® exp) — FjFlKK Car(F ® exp)

are isomorphisms for all j.

We clearly have:
|
g/r]EKK CdR(gj® exp) = COkeI‘(Oéi,j) =

® (Coker ((gr; F)q LN (8rj41 ?)q_r))

q<i—rj

(6.3.6)

By assumption, this complex is acyclic for i —rj < 0 (cf. (6.3.5)). Otherwise, rj < i. As i < —r,
this means that j + 1 is negative, so gr; F = gr;;; & = 0, clearly yielding that gr; = 0, and so
completing the argument.

!
We now turn to (3). We again normalize so that F;F = 0 for i < 0 and gr¥¥ Cyr(F @ exp) = 0
for ¢ < 0.

We aim to show that:
FiE CdR(?é> exp) =0
when ¢ < 0. By assumption, we have isomorphisms:
.= F¥X CdR(S’G!@ exp) — FXE Cyr(F 6'9 exp). (6.3.7)
Therefore, it suffices to show that for every integer n, there is an index i < 0 such that:
FRR Car(T Q'{) exp) € Vect=™".

Indeed, then the stabilized complex in (6.3.7) is in N, Vect="" = 0.
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By our assumption, there exists an integer M such that for ¢ < —M, we have:
Coker (8t : (grj F)i — (grj+1 ?)i_T) € Vect="", (6.3.8)
Then we will show that for i < —M —r, FXK isin VectS™",
As in the proof of (2), there exists a filtration F, on FRX with associated graded terms computed
by (6.3.6). It follows that for i — rj < —M, we have:
gTrjEKK CdR(?é exp) € VectS™",
On the other hand, if ¢ — rj > —M, then our assumption i < —M — r forces 0 > j 4+ 1, which as

before, forces:

!
gr; Ff* Cqr(F @ exp) = 0.

~ !
F;FF Car(F @ exp) = 0
for j < —1, the above analysis implies that:

!
FEE C4r(F @ exp) € Vect=™"
which is what was to be shown.
O

Remark 6.3.1.2. The above method for verifying the convergence of a “Kazhdan-Kostant spectral
sequence” are taken from the proof of [Ras4] Theorem 4.2.1. Indeed, the hypothesis and argument
for (2) above are Step 6 from the proof of loc. cit. rendered into the present setting, and (3) is a
natural variant.

6.4. Proof of Theorem 6.1.2.1.

6.4.1. We now turn to the proof of the theorem. We will first prove the theorem modulo a problem
of spectral sequence convergence; the remainder of the section will verify this convergence.

6.4.2. It clearly suffices to show the result when F € Sthilp(Bun(;)ConS“ © In this case, take a good
filtration on F by applying Lemma 6.2.4.1.

Note that Bun% — Bung factors through Bun% /T. Moreover, note that the map 1 : Bun% —
Al is G,,-equivariant, using the action of G,, on the source via 2p : G,, — T and the G,,-action
which is the square of the homothety action on A! (so 7 = 2 in our references to Lemma 6.3.1.1).

By (6.2.1) and Lemma 6.3.1.1, we see that coeff(F)[dim Bun%}] has a canonical filtration FXK
such that its associated graded is essentially computed by composing the correspondences:

T*Bung x Bunf Bun®,
Bung

— ~ 2 .

T* Bung T* Bun% Spec(k).

Here essentially means the following: we are supposed to apply upper-! along the first leftward
arrow and upper-x along the second leftward arrow; however, for the first arrow, upper-! and
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upper-x* differ by tensoring with a graded line bundle, so up to this discrepancy, we can compose
the correspondences well by base-change.

The composed correspondence is:

glob
Kosg,
/ \
T* Bung Spec(k)
where KongIOID is the global Kostant section; indeed, this is essentially the definition of the Kostant

ob

section. Note that Nilp Xpun, Kosg = Spec(k) (as derived stacks), mapping to Nilp via f&°P ¢

NilpKos.
Now suppose § € Coh(Nilp)¥. As NilpK° is smooth (all of N;lpreg is) and connected, the

o K
Euler characteristic of the (derived) fibers of G at points of Nilp * are constant. In particular, if
¢ : Nilp — T Bung is the embedding, we see that the Euler characteristic of F(Kos%()b, 0*1.9) is the

rank of G at the generic point of Nilp¥°s. More generally, we deduce that for 3 € Coh(T* Bung)"

set-theoretically supported on Nilp, the Euler characteristic of F(KongIOb, o*H) is the multiplicity

. K
of H at the generic point of Nilp *,

As we have a good filtration on F, we see that gr, F is set-theoretically supported on Nilp O SS(F).
Applying the definition of characteristic cycle, we now obtain:

X(F(Kos%[)b, 0" gry F)) = CKos,g-

Reincorporating the twist by the graded line bundle discussed above, we see that:
X(gr?K Coeﬁ(?)) = € CKos,J-
It remains to see that the same equation holds for coeff(F) itself. For this, it suffices to see that

its filtration FXX is bounded from below. We check this below using a convergence criterion from
Lemma 6.3.1.1.

Remark 6.4.2.1. If we knew we could choose a good filtration on F such that gr, F was a successive
extension of sheaves supported on Nilp and flat at f&°P, we would obtain a similarly easy proof of
Theorem 8.0.0.1. Unfortunately, we do not know a way to do this.8

6.4.3. As just stated, we now turn to the spectral sequence convergence. We will verify that the
conditions of Lemma 6.3.1.1 (3) are verified for the filtered D-module 9, 4r(p'F) on Al.

The first assumption is obvious: the original filtration on ¥ is bounded from below (in the natural
sense), so the same is true after applying D-module operations.

The third assumption follows e.g. from our work in §6.4.2: we saw there that gri¥(coeff(J)) is
finite dimensional, and in particular, gri¥¥ coeff(F) is zero for all but finitely many i.

It remains to verify the second condition. We do so below.

38We tried to use the filtration of Kashiwara-Kawai from [KK] for this purpose, but we were not successful.
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6.4.4. We now analyze the second condition from Lemma 6.3.1.1 (3), that is, we check the suitable
boundedness of the secondary grading on:

T(A',0%(gre s ar(p'F)))- (6.4.1)

Analysis exactly as in §6.4.2 shows that we can understand (6.4.1) via the following geometry.
We let KosdGeg = b/N be the degenerate Kostant slice and let Kos(cifg’glmD denote its global avatar:

Kosgeg’gbb = Maps(X, (b/N)/G,) X {QL 1.
Maps(X,BGn)

where Gy, acts by homotheties (i.e., this is the Q4 -twisted version of Maps(X,b/N)). Then (6.4.1)
is computed (up to similarly tensoring by line bundles) by pulling back gr,(F) to I(os(éfg’glo]D and
taking global sections.

In these terms, the secondary grading corresponds to the action of G,, on Kos‘éeg (and hence

Kos(é?g’gbb) via 2p : G, — T, as was considered above, noting that the pullback of gr,(F) to
Kosgeg’glob is G,,-equivariant for this action.

The idea is that the boundedness follows because this action is contracting. We fill in the details
in what follows.

6.4.5. To treat the notion of positively graded quasi-coherent sheaves on stacks, we digress to give
some general axiomatics.

Consider A! as a monoid under multiplication, so QCoh(A!) inherits a convolution monoidal
structure. Let € € DGCatcont be a QCoh(A')-module category in what follows. For example, one
can imagine € = A-mod for a Z=%-graded algebra A.

We have a full monoidal subcategory QCoh(G,,) € QCoh(A%), so QCoh(G,,) acts on € as well,
and we may form €& By functoriality, QCoh(A!/G,,) = QCoh(ANGm¥ acts on Gm-v,

An object § € QCoh(A'/G,,) amounts to a collection of objects F,, € Vect for n € Z with
connecting maps ¢ : F,, — F,41 defined for all n (i.e., to a filtered vector space — this is the Rees
construction). The monoidal structure on this category sends (s, t5), (e, tg) to the object that in
degree n is F,, ® G,, with obvious connecting maps 15 ® ¢g.

Consider the object Oa1/q,), (n) which is 0 in degrees < —n, k in degrees > —n, and connect-
ing maps are identities except where forced to be zero. There are evident maps Oa1/q,, (n) —
Oat/G,,(n+ 1) and colimOa1/q,,(n) = Og,,/q,, is the unit for the monoidal structure. More-
over, each Oa1/q,, (n) is idempotent in the monoidal structure, and the map to the unit defines on
Oa1/q,,(n) the structure of idempotent coalgebra in QCoh(A'/G,,).

We let 0> _,, : CGm® — CGm® be the functor of acting by Oa1/q,,(n). By the above, there is a
natural transformation o>_,, — id, and the essential image of o>_, is the subcategory of objects
F € @Gm¥ for which the map

UZ—ng: —F

is an isomorphism. We let @Gmw:dee==n denote this essential image; the functor 0>_y provides
a continuous right adjoint to the embedding CGm-wdeez—n _y @Gm.w e consider objects of
CGmw.deeZ—n a5 having graded degrees > —n.
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In the example € = A-mod, note that A-mod®m™% consists of graded A-modules, A-modS&m-=="
consists of modules in degrees > —n, and o>_,, takes a graded A-module M = ®;czM; and forms
0>_nM = ®i>_p M; with its natural graded A-module structure.

We note explicitly that for each F € CGm¥  we have:
F =colimo>_,J. (6.4.2)
o>

It follows that if F is compact, then it necessarily has bounded below degrees, i.e., F € @Gm:w:2—n

for some n.

We also note that any functor F' : € — D of QCoh(A')-module categories induces FEm-v :
CGmw _ PGm which obviously commutes with functors o>_p and therefore preserves objects
of graded degrees > —n.

6.4.6. We will prove the following general result.

Lemma 6.4.6.1. Suppose the monoid A acts on'Y, which is a quasi-compact algebraic stack locally
almost of finite type with affine diagonal (over our field k of characteristic 0).

Let G € QCoh(Y)Gm be a Gp,-equivariant complex such that 727G € Coh(Y) is coherent for
every n.

Then T'(Y,G) € Rep(Gy,) has the property that 7>~ "T'(Y,G) has bounded below degrees. Le., if
the grading is denoted T'(Y,G) = ©;T'(Y, )i, then 7> "T'(Y,G); = 0 fori < 0 (with bound depending
onmn).

Proof. Because I'(Y, —) has bounded amplitude (because of our assumptions on Y and k), there
exists an integer M > 0 such that:

TZM(Y,G) = 77, M),

Therefore, it suffices to show that:

T(Y, 727" MG) € Rep(G)

has bounded below degrees for every n. Replacing § by 72 " MG, we see that we can assume G is
coherent to start.

Now note that QCoh(A!) acts on QCoh(Y) and IndCoh(Y), and the functor ¥ : IndCoh(Y) —
QCoh(Y) is a morphism of QCoh(A')-module categories. Therefore, we may apply the discussion
from §6.4.5 freely.

As G is a compact object in IndCoh(Y)G™®, we see that it lies in IndCoh(Y)Gmw:dee==N for
N > 0. Therefore, the same is true of I'(Y, G) € Rep(G,), proving our claim.

O

Now take Gy = gr, F € Coh(T* Bung) (i.e., we forget the grading). Take Y = Kosgeg’gbb and

let G be the pullback of Gg, which carries a G,,-equivariance structure (Kosccl;eg’glOb — T* Bung is
G n-equivariant for the trivial action on 7% Bung). As the pullback of a coherent sheaf, we have
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727G € Coh(Kosgeg’gIOb). Therefore, the requisite boundedness of degrees follows from Lemma
6.4.6.1 and the fact that the 2p-action of G, on Kos(éeg extends to an action of A.39

Remark 6.4.6.2. Lemma 6.4.6.1 can be proved more directly when Y has the property that I'(Y, —)
is conservative, as in our example. Indeed, then 727G = 72~ "% for some perfect complex P, and
all perfect complexes are Karoubi-generated from objects Oy(m), and these obviously satisfy the
conclusion. This is to say: one can avoid the discussion from §6.4.5 in this case.

7. EXACTNESS OF TEMPERED HECKE FUNCTORS

In this section, we establish exactness for Hecke functors acting on the tempered automorphic
category. This material is a sort of digression: Theorem 7.1.0.1 does not mention Whittaker coeffi-
cients (although they are used in the proof). The results of this section are independent of the rest
of the paper up to this point.

7.1. Statement of the main result. Fix a point x € X. Recall from [FR| that we have the
category D(Bung)® *™P. There is a natural quotient functor:

p: D(Bung) — D(Bung)® *emP

with a fully faithful left adjoint p”. The main theorem of [FR] asserts that this data is actually
independent of the point z € X, although we will not need this until the discussion in §7.7.

We consider the action of Rep(G) on D(Bung) via Hecke functors at = € X. For V € Rep(G),
we let Sy, + — denote the corresponding endofunctor of D(Bung).

The goal for this section is to prove:

Theorem 7.1.0.1. (1) There is a unique t-structure on D(Bung)® *™P such that p is t-ezact.
(2) The action of Rep(G)Y C Rep(G) on D(Bung)® **™P is by t-exact functors.

The results in this section adapt to etale sheaves in positive characteristic (conditional on derived
geometric Satake in that context).

As we discuss in §7.7, the above result strengthens the main results of [Gail]. In fact, our proof
is dramatically simpler and has clear conceptual meaning;*° it turns out the assertion is something
purely local, and a simple application of known results about derived Satake and the spherical
Whittaker category.

7.1.1. The argument is purely local. Therefore, we largely take € to be a G(K)-category throughout

Ivl,x

this section (for loops being based at z); the application will be when € = D'(Bun/, "), where
Bungl’m is the moduli scheme of G-bundles with complete level structure at x.

We remind that in this setting, one can speak of a t-structure on € being strongly compatible
with the G(K)-action; see [Rasl] §10.

39Let us clarify one sign issue for the careful reader. We normalize our conventions so that if A' acts on an affine
scheme Spec(A), then A is considered to have Gp,-degrees > 0, not < 0 (although the latter might in some sense be
the more natural, if less aesthetic, convention). This convention was implicit in Lemma 6.3.1.1, where ¢ had degree n
rather than —n, so we have used this convention consistently.

40By contrast, the construction of ﬁ(BunGLn) from [Gail] is ad hoc, and by its nature cannot generalize to
other reductive groups. Our construction produces a different category with the same nice features, and which does
generalize.
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7.2. Averaging from the spherical category. Suppose C is a category with a G(K)-action. We
use the notation of §4.3.

Suppose that € is equipped with a t-structure strongly compatible with the G(K)-action. Recall
that for each group subscheme X C G(K), CX admits a canonical t-structure; it is characterized by
the fact that Oblv : €% — @ is t-exact. The same applies in the presence of an additive character
Y : K — G, and twisted invariants C*-¥.

Lemma 7.2.0.1. If € € G(K)-mod is equipped with a t-structure strongly compatible with the
G(K)-action, then the !-averaging functor Av?b[(2ﬁ,p)] : @GO) 5 Whit=1(@) is t-ezact.
Proof. The proof is standard: we review it here.

The functor Avi;_)l : @i — € is an equivalence, and in particular, admits a left adjoint,

which we denote AV!I_)I;. On general grounds (cf. [Ras4] Appendix B), there is a canonical natural
transformation:

Avi T [—2dim(Iy - 1/T)] - AviTT

We remark that the displayed dimension is 2(p, p) + |A™|, where AT is the set of positive roots for
G.

As in [FG2] Lemma 15.1.2, for F € C%(©)| the cokernel of the natural map:

Avi T () [—2dim(I} - I/D)] - AviT (F)

is partially integrable (in the sense of loc. cit.); in particular, the above map induces an isomorphism
on applying AvI (cf. [FG2] Proposition 14.2.1).

Now recall from [BBM] (see also [Ras2] Appendix A) that we have AV!Il’w = AvI"Y[2dim N].

By Lemma 4.3.0.1, the functor in question is a composition:
I—IT Iy 4
Av, 1 - Av! .
eG(0) OBV, of A= oy Z0 L \whit<L(e).

Applying [BBM] as above, this may instead be written as:

I—I; [ .
EC(0) Oblv, o1 Av, 1 olr AvITY (2 dim N
—>

Whits!(e).

By [Ras4] Lemmas B.2.2-3 and the above, this functor has amplitude < dim([f~I/I)+dim([o1]f/lf)—
2dim N = 2(p, p).

On the other hand, by the above, we can also rewrite this functor as the composition:

I—I7 ) _ Iy,
©G(0) Obly, o1 Av, 1 [—2dim(I] -I/T)] Avj1

s eIt

Whitst(e).

Because Av![_ﬂ; is inverse, hence right adjoint, to Avi _ﬂ, which has amplitude < dim(I1; /I;) =

2(p,p) + dim N (by [Ras4] Lemma B.2.2), this Av, functor has amplitude > —2(g, p) — dim N4

Applying [Ras4| Lemma B.2.3 to Av!h’lp, we see that the above functor has amplitude > 2(p, p) +
dim N —dim N = 2(p, p).

4 This would be obvious from [Ras4] Lemma B.2.3, but that result requires the two subgroups in question to
mutually lie in a compact open subgroup, where [Ras4] Lemma B.2.2 does not.
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Combined with the above, we find that Av!w : @G(0) — Whit<!(@) has amplitude exactly 2(p, p).
(I

Remark 7.2.0.2. As in [Ras4] Appendix B, a G(K)-category with strongly compatible ¢-structure
has an induced ¢-structure on Whit(@). Tt is likely the case that ¢1 o0 1[2(p, p)] : Whit=!(€) < Whit(€)
is t-exact; this was shown in loc. cit. for € = g.—mod, as was observed there also for C being D-
modules on a reasonable indscheme (equipped with a dimension theory, to obtain a t-structure). In
this case, the above result would simply say that AV;Z} : @G(0) 5 Whit(C) is t-exact.

In other words, the use of baby Whittaker rather than full Whittaker in the above (and what
follows) simply reflects our ignorance regarding this point.

7.3. Construction of the ¢-structure. Suppose again that € is a G(K)-category with a strongly
compatible t-structure.

In this case, we may form CE(0) and its tempered quotient CE(O)z—temp Yo let p : CE(O)

@G(O)z—temp {epote the canonical projection. We remind that p admits a fully faithful left adjoint

pt.

Proposition 7.3.0.1. In the above setting, there is a unique t-structure on CG©O)x=temp g oh thqt
the projection p : CG(O) — G(O)a-temp 4o ¢_orqet.

Proof. By [Ras5] Lemma 10.2.1,*? it suffices to show that Ker(p) = @&(0):w-antitemp 5 c]osed under
truncations, and that the resulting abelian category CG(O).z—anti-temp,© g closed under subobjects
(cf. [Ras5] Remark 10.2.2).

By Lemma 4.2.0.1, we have:
UO)wantiztemp — Koy (Avy : €99 — Whit=!(e)).

By Lemma 7.2.0.1, Av?b is t-exact up to shift; it follows immediately that its kernel is closed under
truncations, and the heart of the kernel is closed under taking subobjects.

O

7.4. More on Whittaker functors. We continue to assume C is acted on by G(K).

Fix a dominant coweight A. In this case, we can perform two constructions.
o Let wj‘ : Ad_(ﬁ+;\)(t)f — G, be the composition:

o Ad;\(t) o ¢
(Le., take a character of conductor  for N(K) and apply the corresponding baby Whittaker
construction. )

e Take a representation V> € Rep(G)¥.

We consider C%(©) as acted on by Rep(G) via Satake.

42The cited lemma uses an adjunction in which the quotient admits a right adjoint, not a left adjoint. However,
the proof in loc. cit. works for arbitrary DG categories, not necessarily cocomplete ones (although it is written in that
context). Therefore, we may safely pass to opposite categories to deduce the claim (or observe that the argument in
loc. cit. immediately applies in the present context).
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Proposition 7.4.0.1. In the above setting, there is a canonical commutative diagram:

- I, 3
eG(0) Vi eG(0) Av ! ehY = Whit=!(€)

’ H (7.4.1)

XL L. (t)—
eG(0) AvY [(A.20) AL o iy T4 t—> ehw = Whit=1(€)

Proof. This result is an easy application of the Casselman-Shalika formula. Specifically, we will see
both sides are given by convolving with the same sheaf.

For a coweight i, let 7% : I} - (—1)(£)G(0)/G(O) — GrG be the locally closed embedding of the
I-orbit through (—j)(t) € Grg. For p dominant, let w" "(exp) denote the character sheaf on this
1
orbit, normalized to lie in the same cohomological degree as the dualizing sheaf.

The top line in (7.4.1) is then given by convolution with
i (¢ (exp)) *x8y5 € Whit=}(D(Grg)).

for 8,5 the spherical sheaf correspondlng to V.

The bottom line in (7 4.1) is given by convolution with:

2@} exp))[=2dim (Ad_5_ 1) - G(0)/G(0)) + (A, 29)]

Here the first Summand in the shift appears because we should use constant sheaves (rather than
dualizing sheaves) for x-averaging, and the second summand appears simply because it is in (7.4.1).
We observe that:

dim ((Ad_5_j ) 1) - G(0)/G(0)) = (A + p,2p)

so the above may be rewritten as:

T (%Z) '(exp))[=(A + 25, 2p)].

Finally, by the form of the geometrlc Casselman-Shalika formula given in [ABBGM] Theorem
2.2.2 and Corollary 2.2.3, we have:

P (exp)) 8y [=(5,20)] = 227 (exp)) = (A + 5, 20).
This yields the claim.
O

7.5. A generalization. We remind that by construction, the quotient @&(O):z~temp — G(0) /@G(0),z-anti-temp
inherits a (unique) Rep(G)-action for which the projection p : @G(O) — @G(O)-temp iy Rep(()-
linear.

We now prove:

Theorem 7.5.0.1. Suppose G(K) acts on C € DGCatcont, and that C is equipped with a t-structure
that is strongly compatible with this action.

Then for every V € Rep(G)Y, the functor:
Vk— - eG(O),x—temp N GG(O),x—temp

is t-exact with respect to the t-structure from Proposition 7.3.0.1.
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Proof. We treat right and left exactness separately.

Step 1. First, we show that V & — : QG(O),ztemp _, @G(0),z-temp ig yight, t-exact.
It suffices to prove this result for irreducible representations. Therefore, we take V = VA
Suppose F € CG(9):=0 ig connective. It suffices to show that p(V;\ *F) € @G(0),z~temp,<0

By Lemma 7.2.0.1 and Lemma 4.2.0.1, we have a (necessarily unique) commutative diagram:

GG(O)
lp AV [(270)
CG(O),z—temp ... » Whit=!(€)

in which (crucially!) the bottom arrow is t-exact and conservative.
Therefore, it suffices to show that:
AVY (VA % F)[(27, p)] € Whit=!(€)=C.
By Proposition 7.4.0.1, we can rewrite this term as:
AV (@A + p,20))-

By in this form, the desired estimate follows the usual estimates for the amplitude of Av, functors:
see [Ras4] Lemma B.2.2.

Step 2. We now prove left t-exactness. It suffices to prove this for finite dimensional V. Then the
functor Vx— : @G(O)a—temp _y @G(O)z—temp ig yight adjoint to VVx— : G(O)z—temp _y @G(0),z—temp,
The latter is right t-exact by the above, so the former must be left {-exact as desired.

O
Finally, Theorem 7.1.0.1 follows by taking C = D!(Bungl’m) in Theorem 7.5.0.1.

7.6. Variant for nilpotent sheaves. Note that the spherical Hecke action HPh = D(Grg)¢©) ~
D(Bung) preserves Shvy;,(Bung). Therefore, we may form:

ShVNZ‘lp(BunG)m—temP = Shvyi,(Bung) ® QCoh(Qog/G),
IndCoh(Q0§/G)
as for D(Bung)® *™P. The same applies for Shva, (Bung)a™ttemp,

By functoriality, we then have a commutative diagram:

ShVNilp(BunG)antiitemp E— D(Bung)antiftemp

| |

Shvyiy(Bung) D(Bung)

lp lp

Shvyp (Bung) ™ —————— D(Bung)'™P.

The horizontal functors are fully faithful e.g. because Shvyg,(Bung) — D(Bung) admits a FEPh
linear right adjoint.
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We see from Theorem 7.1.0.1 that Sthﬂp(Bung)anﬁ_temp is closed under truncations and subob-
jects (since this is true for D(Bung ) *™P and Shvy;;, (Bung) separately). Therefore, Shvy, (Bung)emP
inherits a t-structure for which the projection p : Shvyi;,(Bung) — Shva, (Bung)® *™P is t-exact.
Then the bottom horizontal arrow above is t-exact (and conservative, being fully faithful) for this
t-structure.

From the diagram above and Theorem 7.1.0.1, we see that Hecke functors are t-exact on Sthilp(Bung)temp
with respect to the above t-structure.

7.7. Relation to Gaitsgory’s work for GL,. In this section, we briefly indicate how the above
results can be used to better understand the main results of [Gail].

7.7.1. A variant with moving points. Recall from [FR] that D(Bung)® *™P is canonically indepen-
dent of the point z € X. We therefore use the notation D(Bung)*™P instead.

Let V € Rep(G)Y be given. Recall that there is a Hecke functor:

Hy x : D(Bung) — D(X x Bung) = D(X) ® D(Bung)

whose !-fibers at points x € X give the usual Hecke functors at points.

It is easy to see that the functor Hy x induces a functor:

H P : D(Bung)' ™ — D(X) @ D(Bung)" ™.

We have the following generalization of Theorem 7.1.0.1:

Theorem 7.7.1.1. The functor
H‘t;f)“gp[fl] : D(Bung)"™ — D(X) ® D(Bung)™™P

18 t-exact.

This follows by performing the proof of Theorem 7.1.0.1 over X, and applying [FR].

7.7.2. We now observe that Theorem 7.7.1.1 yields a quotient of D(Bung) with the properties
described in [Gail] §2.12. Namely, Hecke functors are t-exact, and Deysp(Bung) € D(Bung) is
right orthogonal to D(Bung)**mP by [Ber3).

The construction of such a quotient is the main technical input in [Gaill; see the discussion of
loc. cit. §2.13.

Our argument is valid for general reductive groups G. Moreover, the degree restrictions in loc.
cit. are not necessary here. Finally, we observe that the quotient we consider here has evident
conceptual meaning in geometric Langlands, which was not the case for the quotient considered in

[Gail].
Finally, we remark that even for GL,,, our methods are much simpler than those in [Gail].

However, to obtain a result for /-adic sheaves, one needs some additional input. First, one needs
derived Satake for (-adic sheaves (which has been announced by Arinkin-Berzukavnikov). More
seriously, one would need the independence of?® Shv(Bung)* *™P of the point 2 € X; [FR] shows
this only for Shvy;;,(Bung) in the ¢-adic context.

We also refer back to Remark 1.5.2.1 for more context on our result.

43Here, unlike in the rest of the paper, Shv denotes ¢-adic sheaves, not regular holonomic D-modules.
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8. WHITTAKER COEFFICIENTS OF NILPOTENT SHEAVES
In this section, we establish favorable properties of Whittaker coefficients for sheaves with nilpo-
tent singular support.
For our later applications, the main result of this section is:

Theorem 8.0.0.1. The functor coeff[dim Bung| : Shvy,(Bung) — Vect is t-ezact.

Using [AGKRRV2], we deduce this result from a theorem of Kevin Lin.

8.1. Around Lin’s theorem. We begin this section by describing Lin’s result and deducing some
immediate consequences of it.

8.1.1. Formulation. Below, we let** € D(Bung) denote the constant sheaf, i.e.,

WBun [—2 dim Bung].

gBunG gBuI‘lG -

We let A = Aun,, denote the diagonal map Bung — Bung x Bung, and we let TBun® * Bun% —
Spec(k) denote the projection.

Theorem 8.1.1.1 ([Lin]). There is a canonical isomorphism:

!
(coeff @ id) (Arepun;) = (Tpung X id)sar ((p x id)' (Arepung) © PiY (exp)> [— dim Bunfy] =~
Poinc -2 dim Bung| € D(Bung).

Remark 8.1.1.2. We highlight that this theorem is a particular isomorphism between two explicit
sheaves on Bung. It is in the spirit of many®® results on quasi-maps spaces in geometric Langlands.
The proof uses geometry of the Vinberg degeneration (via [Che|) and Zastava spaces. Specifically,
the argument (%) constructs a map, (i) shows that the map is an isomorphism at the cuspidal level
(using that the pseudo-identity and identity coincide there, cf. [Gai7]), and (i) checks that the
map is an isomorphism after applying constant term functors, using Zastava geometry (and other
tools) to study the results.

8.1.2. Derivation from geometric Langlands conjectures. We now (heuristically) show how Theorem
8.1.1.1 is predicted by standard compatibilities from geometric Langlands. We first work up to
shifts,*6

Specifically, we recall from [Gai7] §Conjecture 0.2.3 that:
Ajegyy, € D(Bung) ® D(Bung)
up to shifts is supposed to correspond to:

(Uit @ Unigp) AN (s )

44T he notation is a bit funny; we follow [AGKRRV1] in letting e be opaque notation for the field k, thought of as
the field of coefficients for our sheaf theory.

We find this notation e_ a bit more geometrically communicative for constant sheaves than k_... although it gets
tricky for a point.

45¢Cf. [BG2], [BFGM], [Chel, [Sch], [SW], among others.

46Unfor‘cu1c1ately7 the compatibility between both Eisenstein series and strange duality with Langlands duality are
often only stated up to shifts (and tensoring with line bundles). It is not our purpose here to correct that issue in the
literature here, which unfortunately leaves the ambiguity in shifts at the end.

Our understanding is that the forthcoming work of Ben-Zvi—-Sakellaridis—Venkatesh will systematically clarify such
issues, including the precise compatibility between both Eisenstein series and miraculous duality with geometric
Langlands.
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under geometric Langlands. Here we abuse notation in letting Nilp C T*[—1](LSx) denote the
spectral global nilpotent cone, as in [AG]. We also let Wy, : IndCoh(LSx) — IndCohyy, (LS x)
denote the natural projection.

On the other hand, recall that the functor:

coeff : D(Bung) — Vect

is supposed to correspond to:

FIndCoh(LSé7 —) : IndCohyip (LS ) — Vect.

Combining these two assertions, we see that:

(coeff ®id)(Arepyy,) € D(Bung) (8.1.1)

should correspond (up to shifts) to:
(TN (LS, —) @ 1d) ((Pvitp © Tovizp) AP (wis ;) = wis,, € IndCohniy (LS ).

We now observe that using the symplectic structure on LS5, we have:

wrs, = OLs[v. dim(LSg)]
where v. dim(LSx) is the Euler characteristic of the cotangent complex of LS 5, which is 2 dim Bung.

Now observe that coeff is corepresented by Poinc; while F'”dc°h(LSG, —) is corepresented by
OLs,, so these two objects must correspond to each other under geometric Langlands.

Combining these observations, we find that (8.1.1) and Poincy both correspond to wrs. (up to
shifts) under geometric Langlands, so we expect the two to be isomorphic (up to shifts): this is the
assertion of Lin’s theorem.

Remark 8.1.2.1. There are various ways to recover the precise shift. First, it is built into the proof
of Lin’s theorem, specifically, the construction of the comparison map in Theorem 8.1.1.1; we prefer
not to describe the comparison map here and leave it to Lin’s forthcoming work.

However, assuming Theorem 8.1.1.1 up to shifts, the precise value is also forced by known results.
Specifically, let Eis, € D(Bung) be the s-pushforward of the IC sheaf on Drinfeld’s compactification
Bung. According to [BHKT] Appendix B (11.18), coeff,(Eis;,) = k[dim Bung].*” As Eisy, is Verdier
self-dual, we see that coeff(Eis;,) = k[— dim Bung]. Finally, it is standard to see that Eisi, has
nilpotent singular support.

On the other hand, a version of Lin’s theorem with an additional shift (beyond the stated one) by
N € Z would ultimately yield a version of our Theorem 8.2.1.1 with the same shift by N appearing.
The only one consistent with the above calculation with compactified Eisenstein series is N = 0.

47The reader who glances at [BHKT] Appendix B (11.18) will find additional shifts. The shift by — dim Bun% in
loc. cit. does not appear for us simply because we defined coeff; with a shift by dim Bun% built in.

There is also a shift by —dim Bunr in loc. cit. We observe that in the notation of loc. cit., we should take
F = ICBuny € Shv(Bunr)? to recover our specific example. Moreover, in loc. cit. (11.18), the A = 0 term involves a
x-fiber of F at p(Q2x) € Buny; as ICBuny; = €Buny [dim Buny], this yields an additional shift by dim Buny cancelling
the one appearing in the equation, and ultimately leading the precise value stated here.
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8.1.3. Relation to miraculous duality. Recall the Drinfeld-Gaitsgory miraculous duality functor from
[GaiT7]:48
Mir : D(Bung)Y — D(Bung).

We remind that [Gai7] Theorem 0.1.6 asserts that this functor is an equivalence.
Corollary 8.1.3.1. Mir(coeff) = Poine[—2 dim Bung]|.

This result is a formal consequence of 8.1.1.1. We review the relevant ideas here.

First, we record the following obvious result.
Lemma 8.1.3.2. Let C € DGCatcopnt be given, and let A : € — Vect be a functor. Then:

A®id): C®CY = Vect® €Y =@V

maps the unit*® ue to \.

Proof of Corollary 8.1.3.1. The defining property of miraculous duality is that the functor:

id ® Mi
(VAR! ir

D(Bung) ® D(Bung) D(Bung) ® D(Bung) — D(Bung x Bung)

sends up(Bung) 10 Al€pyn,,- (We remark that each arrow above is an equivalence.)
We now have the commutative diagram:
D(Bung) ® D(Bung)" 4o My D(Bung) ® D(Bung) —— D(Bung x Bung)
J/coei’f ®id coeff ® idJ/

D(Bung)V Mir D(Bung)

We calculate the image of upgun,) in two ways. By the above, if we traverse the upper leg of
the diagram, we obtain Ajep,, ., so Theorem 8.1.1.1 implies we obtain Poinc[—2 dim Bung] after
applying the right arrow. On the other hand, if we apply the left arrow, Lemma 8.1.3.2 implies we
obtain coeff € D(Bung)V, which maps to Mir(coeff) on applying the bottom arrow.

O
8.2. Whittaker coefficients of nilpotent sheaves.

8.2.1. Comparison of coefficient functors. We now prove the following assertion:
Theorem 8.2.1.1. There is a canonical isomorphism of functors:
coeff ~ coeff|[—2 dim Bung] : Shvy,(Bung) — Vect.

Before proving this theorem, we record the following result:

Lemma 8.2.1.2 ([AGKRRV2], Corollary 4.3.7). Let A € Shv(Bung)" be given.’® Then we have a
canonical isomorphism:

Alshvagiry (Bung) = Cear (Bung, Mir(A) @ —)

481 [Gai7], this functor is denoted Ps-idBung,1- Our notation is taken instead from [AGKRRV2].
491 e., the object corresponding to ide under € ® €Y ~ Endpgcatyy, (€)-
50We can work with D-modules just as well as sheaves here; but in the non-holonomic case, one would need to

remark that Mir()\) ®— may take values in the pro-category (although C¢ qr(Bung, —) will then map the result into
Vect C ProVect).
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of functors:

Shvyip(Bung) — Vect.
Proof of Theorem 8.2.1.1. For F € Shvy;;,(Bung), Lemma 8.2.1.2 yields:
coeff (F) = C.(Bung, F& Mir(coeff)).
Applying Corollary 8.1.3.1, the right hand side is:
C.(Bung, ® Poine[—2 dim Bung]).

Applying the formula (5.4.1) and base-change, the right hand side is coeff|(F)[—2 dim Bung], yield-
ing the claim.

O

8.2.2. We deduce:

Corollary 8.2.2.1. For F € Shvy;,(Bung) locally compact, we have:
coeff (DVerdierF) — coeff (F)V[—2 dim Bung].

That is, coeff[dim Bung] commutes with Verdier duality on Shvy;;,(Bung).

Indeed, this follows from Lemma 5.4.2.1 and Theorem 8.2.1.1.

8.2.3. Variant with conductor. Now fix D a AT-valued divisor on X.
We have the following generalization of Theorem 8.2.1.1.
Corollary 8.2.3.1. There is a canonical isomorphism of functors:

coeff p ~ coeff p |[-2 dim Bung] : Shvy,(Bung) — Vect.

Proof. This is immediate from Theorem 8.2.1.1, Theorem 5.3.0.1, and Corollary 5.4.3.1.

As with Corollary 8.2.2.1, we have:

Corollary 8.2.3.2. For D as above, coeff p[dim Bung| commutes with Verdier duality on Shvy;,(Bung).

8.3. Exactness. We now prove Theorem 8.0.0.1. In fact, we prove the following generalization.
Theorem 8.3.0.1. For every D a AT -valued divisor on X, the functor:
coeff p[dim Bung] : Shvy,(Bung) — Vect

s t-exact.

Proof.
Step 1. First, we prove this result in the sufficiently large case, cf. §5.1.7.

We begin by naively estimating the amplitude of coeffp on D(Bung). Decomposing into steps,
we observe:

e The functor p!D has amplitude < dim Bung — dim Bunl"").

e Tensoring with the character is designed to be t-exact.
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e By Lemma 5.1.7.2, for D sufficiently large, CdR(Bun%(fD), —) is right t-exact.
e We recall that there is a shift by dim Bun"?) in the definition of coeff D-

Combining these observations, we see that coeff p has cohomological amplitude < dim Bung.

On the other hand, the same reasoning shows that®! coeff p, : Shv(Bung) — Vect has amplitude
> — dim Bung.

Now the exactness follows from Corollary 8.2.3.1.

Step 2. We now prove the result for D = 0.

First, we note that Poinc; € D(Bung) lies in the left orthogonal to D(Bung)® t™P: indeed,
this follows immediately from derived Satake and the definition of temperedness. It follows that
the functor coeff = Hom(Poinc;, —) factors through the projection to D(Bung)®™P, i.e., we have:

D(Bung)

-

D(Bung)temp .. coeft % \/ect.

The same applies in the presence of a divisor.

Let # € X be a point and let A be a coweight with A - z sufficiently large (e.g., A\ = 2np for

n > 0). The Hecke action of Rep(G) on D(Bung) below is considered at the point z € X.

Clearly the trivial representation is a summand of VAV —wol), Therefore, coeff is a summand
of coeff((V* @ V=20(N)) « —). Therefore, it suffices to show that the latter functor is t-exact. For
Fe Sthﬂp(Bung)SO, we have:

coeff (V@ V710W) x F) = coeff (VA + (V00 ) Thm220

coeﬁ;\.x(V*wO(;\) *F) = (?()\éi/i";\.x(p(vfwo(j‘) *F)) = cﬁ;,x(V*wow *p(F)).

Now by Theorem 7.1.0.1 (and §7.6), p(F) € Shv(Bung)*™P <0, so V‘wO(j‘)*p(ff) € Shvy,(Bung ) temp:=<0
by Theorem 7.1.0.1. It follows from Step 1 that coeff;\m(V*wO()‘) *p(F)) is in degrees < dim Bung,

giving right exactness of coeff 5\,$(V_“’0(5"””) * —)[dim Bung], so (by the above), right t-exactness of
coeff[dim Bung] as well.

The same logic applies for left t-exactness, giving the claim.

Step 3. We now deduce the claim for general D. In fact, this is obvious from the D = 0 case, given
Theorem 7.1.0.1 (in the form of §7.6, and using [FR] to allow divisors with support at multiple
points) and Theorem 5.3.0.1.

O

510ne can work just as well with Dyoi(Bung) here.
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Part 3. Conservativeness of the Whittaker functor
9. REGULAR NILPOTENT SINGULAR SUPPORT AND HECKE FUNCTORS

9.1. Statement of the result. This section is dedicated to the proof of the following result.

Theorem 9.1.0.1. Suppose F € Shvyi,(Bung) has the property that SS(F) N Nle # 0, ie.,
SS(F) € Nilpirreg-

Then there exists D a At -valued divisor on X such that Nilp¥° C SS(VP « 7).

Combined with Theorem 4.1.0.1, we obtain:
Corollary 9.1.0.2. Suppose I € Shvy;,(Bung). Then either:

(1) F € Sthilp(Bung)anti*temp, or:
(2) There exists D a A -valued divisor on X such that NilpK°s C SS(VP x F).

9.2. A local result. We begin with a purely local result concerning Hecke modifications and affine
Springer fibers.

9.2.1. We work around an implicit point x € X (k) with coordinate t. Below, it is convenient for
indexing purposes to consider Grg as the quotient G(O)\G(K), i.e., we quotient on the left. There
is a residual G(K)-action on the right. We let Gr, denote the G(O)-orbit through fi(t) € Grg, and

we let @‘é denote its closure.
Let € € g((t)) be given. We define the affine Springer fiber Spré as:
Spré == G(0)\{g € G(K) | Ady(¢) € g[[t]]} < Grg .

9.2.2. Below, we fix a k-point ¢ € N(O), i.e., a nilpotent element ¢ € g[[t]]. We suppose that ¢ is
generically regular, i.e., the induced element of g((t)) is regular.

Asin §2.5.5, there is a canonical discrepancy disc(p) € Agad attached to this element. Specifically,

+
Gad

of this simply as an element of Agad via its degree.

the perspective of loc. cit. attaches a AT, -valued divisor on the formal disc to ¢, but we can think

Specifically, if i € [\Jéad is a coweight, saying ¢ has discrepancy i means that it can be G(O)-
conjugated into:

Adg oy (€) + [n, n][[t] < g[[t]] (9.2.1)
for e € ®jeg,na; € n a regular nilpotent element.

Remark 9.2.2.1. For fi € ]\gad, the construction of §2.5.4 yields a locally closed scheme N(O); C

N(O) parametrizing generically regular ¢ € N(O) with discrepancy ji. Specifically, we take:

N(O); = N(O x Spec(k
(O =X )HiegG<A1/Gm><o> pec(k)

where Spec(k) — HiEJG(Al/Gm)(O) corresponds to fi (i.e., it is the point (t(21));5.).
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9.2.3. For ¢ € g((t)) regular nilpotent and i € Agad, let Sprz C Spr¢ denote the locally closed
subscheme:

Sprs, = G(0)\{g € G(K) | Ady(¢) € g[[t]], disc(Ady(&)) = i} € Gre.
In other words, we take:

NOW/CO) ey 1

9.2.4. Main local result. We now have:

Proposition 9.2.4.1. Let ¢ € N(O) be an (everywhere) regular nilpotent element of g[[t]].

+

Gaa denote the induced coweight for G4,

Suppose A € AT is a dominant coweight, and let Xeh
Then:

(@é‘; N Spr?)red = Spec(k) € Grg .
That is, the displayed intersection is the point 5\(15), at least at the reduced level.

Proof. Below, we let 7 : G(K) — G(O)\G(K) = Grg denote the projection.

The assertion clearly depends only on the G(O)-orbit of . Therefore, we can assume p = e €
BicioMa; € n C n[t] (with each projection e; € n,, of e necessarily non-zero, of course).

Suppose g € G(K) is a k-point with 7(g) € @)C‘; with Ady(e) € g[[t]] having discrepancy X. We

will show g € G(O)A(t). Clearly this would suffice.
By (9.2.1), we can find v € G(O) and h € N(K)T(O)A(t) such that:
Ad, Adgy(e) = Adp(e).

The assertion about g depends only depends on its left G(O)-coset; therefore, we may replace g
by g to instead write:

Adgy(e) = Ady(e).
By assumption, we can write h = nr\(t) for n € N(K) and 7 € T(O).

Observe that gh~! centralizes e; by standard facts about regular nilpotent elements, this implies
gh™ € N(K)Zg(K) (we remind that Zg C G is the center of G). This implies:

g=gh™'-h e NE)T(0)Za(K)A(t) = At)N(K)T(0)Za(K).
Therefore:

e [I (+OONE) C Cra.
CeAz (a0

(By standard convention, we have omitted a 7 before (X + {)(t).)
It is well-known (cf. [MV]) that for 7 € A*, we have:
Gry NN (K) £ 0 0 <7 < X,
It follows that:
7(g) € Gray N A N(K).
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In addition, it is well-known (cf. [MV]) that this intersection is the single point A(t).
=\

Therefore, we see that 7(g) (t), as desired.

9.3. Proof of Theorem 9.1.0.1.

9.3.1. Bounding singular support from below. Let f : H{ — Y be a map of algebraic stacks with Y
smooth and let A C T*H be a closed conical substack. An isolated pair for A is a point (z,&) €
H xy T*Y with x € H (a field-valued point) and £ € T}‘(z)‘j such that:

o df(§) € Al
e The intersection H xy T*Y N df ~1(A) is zero-dimensional at (z, ).

We have:

Theorem 9.3.1.1 ([AGKRRV1] Theorem 20.1.3). Suppose F € Shv(H) with (x,&) an isolated pair
for SS(F). Then (f(x),&) € SS(fear(9)).

Remark 9.3.1.2. In the étale setting, one needs additional hypotheses; cf. [Sai] and [AGKRRV1]
Remark 20.1.5.

9.3.2. Proof. Choose a coweight A € A such that:°?

—wo(A)+(2—29)p

Nilp C SS(F).

We may do this as we assumed SS(F) C Nilp and NilpNSS(F) # 0, so some irreducible component
of Nilp must lie in SS(F).

The relevance (cf. §2.5.4) of —wo(N) + (2 — 29)p exactly means that A\ € AT (equivalently:
*wo()\) € A+)

Let # € X be a k-point and let A be a dominant coweight. Let $* e D(Grg,) denote the
s-extension of the dualizing sheaf on the A-orbit. By geometric Satake, this object has a finite
filtration in the derived category with associated graded objects being usual spherical sheaves (up
to shifts). Therefore, by the standard interaction of singular support in exact triangles, it suffices

to show that SS(8* x F) N Nilpkes £ (.

Indeed, let Bung 2 iHi LEN Bung be the corresponding Hecke correspondence associated to x

and the coweight A, normalized so the py has fibers that are twisted forms of Gré. We obtain a
correspondence:

T* Bung X in‘ T* Bung X in‘

Bung Bung

— ~ N

T* Bung T3 T* Bung

52The funny indexing is chosen this way for later convenience.
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where the first correspondence relates to p; and the second relates to ps. As in [AGKRRV1] §20,
the composition of these two correspondences is:

{((:PG',la 901)’ ({‘PGQ? 902)77—)}

T

T* Bung T* Bung

where the top line indicates that (Pq i, i) € Higgsg (¢ = 1,2) and 7 is an isomorphism of these
Higgs bundles away from x so that the underlying isomorphism P | X\& = Pa ol x\e has relative

position .

The singular support of p!1 (F) is computed by the usual naive estimate because p; is a smooth.
Applying Theorem 9.3.1.1, we find that it suffices to find points (Pg 1, ¢1) € SS(F) C T Bung and
a point (Pg 2, p2) € T* Bung such that:

((Pa1#1)s (Pa2s p2),7) € (ax B)H(SS(F) x (Pa2, 92))
and the right hand side should be zero-dimensional at this point. Indeed, in this case, we necessarily
have (Pg.2, p2) € SS(f+.arF) (by Theorem 9.3.1.1). As Nilp°s C Nilp is open, SS(G) NNilpkos # ()
implies that Nilp%° C SS(9G) for any G € Shvyip(Bung); ie., the existence of a single point of
Nilp¥es in SS(G) C Nilp implies that all of Nilp¥® is contained there.

Let Pg1 be the G-bundle induced from the T-bundle p(Q%)(—=\ - x).53 There is a canonical

glob

nilpotent Higgs field fp~" on Pg 1, generalizing the D = 0 case from §2.5.6.

glob wo(X)+(2—29)

Note that the point (Pg,1, fp ) lies in Nilp~ p’ so lies in SS(T).
. K
We take (Pg 2, ¢2) to be the base-point of Nilp OS; i.e., we apply the above construction with D
replaced by 0. We have an evident choice of Hecke modification 7.

By Proposition 9.2.4.1, we have:

wo(N)+(2—-29)p

(a x B) (Nilp~ x (Pa2,92)) (9.3.1)

is the single point constructed above.

In more detail: Hecke modifications of (Pg 2, p2) are determined by their restrictions to the formal
neighborhood of z. Moreover, any point (Pg1,%1,7) of (9.3.1) must have that the discrepancy
divisor of ¢ is supported only at z, since (Pg 2, ¢2) has vanishing discrepancy divisor and the two

are isomorphism away from z. As we know the degree of Pg ;1 (as it is a A-modification of Pa2)

—wo(X)+(2—2¢)p

and have assumed (':JSGJ, &1) € Nilp ?_ the discussion of Remark 2.5.5.1 determines the

degree of the discrepancy divisor, whose here is found to be —wg(X), i.e., the image of —wp()\) in
]\Gad. We track signs: Pg 2 is a modification of P 1 of type A, s0 Pa,1 is a modification of Pg o of
type —wo(j\). Choosing arbitrarily a trivialization of Pg 2 on the formal disc of x, the proposition
now applies and yields our claim.

53For the reader’s convenience in verifying some formulae })elow, we note that if we twist by wo, we see that this
G-bundle is also induced from the T-bundle (—7)(Q%)(—wo(N) - z).
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10. CONSERVATIVENESS OF WHITTAKER COEFFICIENTS

At this point, the proof of the main theorem is essentially just a matter of combining our previous
results. Specifically, this is true in the nilpotent setting; we deduce the assertion for general D-
modules using a straightforward application of the method of [AGKRRV1] §21.

10.1. Conservativeness for nilpotent sheaves.

10.1.1. Let Nilp#°s C Nilp be the union of all components of Nilp besides NilpX°s; this is a closed

Kos is open in Nilp.

conical subset of Nilp because Nilp
We have:

Lemma 10.1.1.1. Shvy;;,#ios (Bung) is exactly the kernel of the functor coeff : Shvyy,(Bung) —
Vect.

Proof.
Step 1. First, we show Shvyg,#kes (Bung) C Ker(coeff).

Note that Shvy;,#kes(Bung) C Shvy,(Bung) is closed under truncations and subobjects by
definition of singular support. Moreover, again by definition, this category is left complete for its
t-structure; in particular, an object is zero if and only if all its cohomology groups are zero.

Therefore, by t-exactness (up to shift) of coeff (Theorem 8.0.0.1), it suffices to show coeff (F) = 0
for F € Shvyy,rxos (Bung)¥. Any such object is the union of its constructible subobjects, so we
may assume JF is constructible (by exactness again).

In this case, coeff(F) € Vect® and lies in a single cohomological degree. Therefore, it suffices to
show that its Euler characteristic is zero. This follows from the assumption on F and from the index
theorem, Theorem 6.1.2.1.

Step 2. Next, we show that if F € Shvyg,(Bung) with Nilp¥°s C SS(F), then coeff (F) # 0.

The logic is the essentially same as in the previous step. There exists some integer ¢ and some
construcible subobject § C H*(F) such that NilpKos C SS(9).

In this case, coeff(9) is concentrated in cohomological degree dim Bung. Moreover, it is non-zero
by Theorem 6.1.2.1; here we remind that for objects of Shv", the characteristic cycle assigns positive
integers to components of the singular support.

By exactness of coeff, we then have:
HYmBUG (coeff(G)) s HUMBIG (coeff(HY(F))) = HIMBUG +i coeff ().
Clearly this implies coeff(J) # 0.
O
temp

Corollary 10.1.1.2. Suppose F € Shvyi;,(Bung) has non-zero projection to Shvy;,(Bung)
Then there is a At -valued divisor D on X such that coeff p(F) # 0.

Proof. By assumption, F & Shvyg,(Bung ) tmP_ Therefore, by Theorem 4.1.0.1, F N Nilp # 0.

Therefore, by Theorem 9.1.0.1, there is a AT-valued divisor D on X such that NilpXes C SS(VP x
F). In this case, by Lemma 10.1.1.1 and Theorem 5.3.0.1, we obtain:

coeff p(F) = coeff (VP x F) # 0.
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O

10.2. Enhanced coefficient functors. It is now convenient to introduce the following functor
encoding all Whittaker coefficient functors simultaneously.

10.2.1. Nilpotent setting. Recall the prestack LS‘”G?Stlr from [AGKRRV1]. By loc. cit. Theorem 14.3.2,
there is a canonical spectral action of QCoh(LSEﬁSH) on Shvy;,(Bung) that is suitably compatible
with Hecke functors.

Moreover, the category QCoh(LSrCfStr) is canonically self-dual by [AGKRRV1] Corollary 7.8.9. As

in loc. cit., we let:
I = I‘!(LSESW, -): QCoh(LSEStr) — Vect

denote the functor dual to the structure sheaf O grestr € QCoh(LSE‘TfStr )
€

10.2.2. On formal grounds, we obtain a canonical functor:
coeff™™ : Shvyy, (Bung) — QCoh(LSES“)

fitting into a commutative diagram:

Shvyiy(Bung)
lcoeffe“h coeff (102 1)
QCoh(LS%™) ———3 Vect.

Namely, the construction proceeds as follows. We have an action functor:
QCoh(LSrG?Str) ® Shvyip(Bung) — Shvy, (Bung).
Dualizing the first tensor factor and applying its self-duality, we obtain a functor:
Shvyip(Bung) — QCoh(LSE™™) @ Shvyir, (Bung).
Now compose this functor with id ® coeff. By construction, this functor has the desired property.
By construction, coeff*™" factors through Shvyi, (Bung)t™P. We abuse notation in also denoting

this functor by coeff®™?,

10.2.3. More generally, for G € QCoh(LSES“) and J € Shvy;;,(Bung), if we let « denote the action
of the former category on the latter, we have:

coeff(§x F) = IV (LS, § ® coeff™™ (F)).
Recalling that Hecke functors (at points) factor through the action of QCoh(LngStr) and applying
Theorem 5.3.0.1, we see that coeff p(F) can be algorithmically extracted from coeff® ().
In particular, we obtain:
Theorem 10.2.3.1. The functor:

coeffe™h ; ShVNilp(BunG)temp N Qcoh(Lsréstr)
18 conservative.

Indeed, this is immediate from Corollary 10.1.1.2 and Lemma 10.1.1.1.
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10.2.4. Variant for D-modules. Recall from [Gai2] (see also [Gai6] §4.3-4.5 and §11.1) that there is
a canonical action of QCoh(LSx) on D(Bung), similar to the above functors.

As LS is a QCA stack, QCoh(LSx) is canonically self-dual; this time, the functor dual to O is
simply usual global sections.

Therefore, we obtain a functor:
coeff™™™ : D(Bung) — QCoh(LS)
fitting into a commutative diagram:
D(Bung)

QCoh(LSg5) ——— Vect.

10.2.5. We now state the natural compatibility between the above two constructions.
Let ¢ : LSE?Stlr — LS4 denote the natural map. The symmetric monoidal functor:
/" : QCoh(LSx) — QCoh(LSrG?Str)

admits a left adjoint ¢7 (denoted ¢ in [AGKRRV1] §7.1.3); this functor is naturally the dual to ¢*
for the self-duality of both sides. In particular, I'(LSx, t2(—)) = I'.

We obtain commutative diagrams:

Shvatp(Bung) — 2™ QCoh(LSiE:r)

1 b

D(Bung) —M™ , QCoh(LSg)
and:

Shvaitp(Bung) —2™ 5 QCoh(LS%)

l [

D(Bung) —™™ , QCoh(LSg).

Here the left arrow in the second diagram is the right adjoint to the embedding, and the commu-
tativity of this latter diagram follows from [AGKRRV1] Proposition 14.5.3.

10.3. Conservativeness for general D-modules. We now conclude the proof of our main result,
Theorem 10.3.3.1 below.

10.3.1. Field extensions. We briefly digress to discuss field extensions.

Suppose k'/k is a (possibly transcendental) field extension. For Y over k, we let Yy denote the
base-change of Y to k'

For prestacks over k', we write D /kr(—) to denote D-modules considered relative to the field
k. We use Shv /i similarly: this means the ind-category version of regular holonomic objects of

D (—).
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10.3.2. Let = € X (k) be fixed, and let 2’ € X'(k’) be the induced point.
There is a natural equivalence:
:}fiph X Vectk/ ~ }CZ]‘:/)h

Here the right hand side is taken to be defined with D-modules over k’, as above. In other words, up
to extending scalars, the spherical Hecke categories are the same. This identification is compatible
in the natural sense with derived Satake.

It follows from the definitions that for € € inphfmod with € := C® Vect/, we have commutative
diagrams:

ez anti-temp e er- temp

| | |

e anti—-temp e ehT- temp .

There are similar functors if we work with the adjoints to the horizontal arrows. Moreover, the
vertical arrows induce isomorphisms after tensoring with Vecty:.

10.3.3. General case. Finally, we show:
Theorem 10.3.3.1. The functor
coeff™™ : D(Bung)"™ — QCoh(LS)
18 conservative.
Suppose F € D(Bung) is given with coeff(F) € QCoh(LS) vanishing. We need to show that
F is anti-tempered, i.e., its image in D(Bung)®™P is zero.

As in [AGKRRV1] Lemma 21.4.6, it suffices to show that for any field extension ¥'/k and any
o € LSx(K'), the image of F in:

D(Bung)*™  ®  Vectw
QCOh(LSG)

is zero.

The functor:

ShV/k’,Nilpk/ (Bung,k/) (9] Vecty — D(Bung) & Vecty
QCOh(LSGJﬂ/) QCoh(LS)

is an equivalence by [AGKRRV1] Proposition 13.5.3. The same applies for tempered variants by
§10.3.2.

From §10.2.5, we have a commutative diagram:

Shv /1 Nitp,, (Bung g )*™P ® Vecty
QCoh(LS g 1)

l: (10.3.1)

D(Bung)*™ @  Vectyy ——— Vecty.
QCoh(LS )
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Here the rightward arrows are induced by extension of scalars from the functors coeff®™". The left
arrow in this diagram is conservative by Theorem 10.2.3.1, observing that we have a commutative
diagram:

Shv /i Nitp,, (Bungx)*™  ®  Vectyy —————— Shv s nipp,, (Bung g )™
QCOh(LS@)k/)

l lcoeff enh

VeCtk./ QCOh(LSGVk/)

with horizontal and right arrows conservative. Therefore, the right arrow in (10.3.1) is conservative,
implying & maps to zero in this category, yielding the claim.

11. THE STRUCTURE OF HECKE EIGENSHEAVES
In this section, we use our earlier results to deduce structural properties of Hecke eigensheaves.
The main result is Theorem 11.1.4.1.
Throughout this section, to simplify the discussion a bit, we assume the ground field k£ to be

algebraically closed (in addition to being of characteristic 0).

11.1. Setup.

11.1.1. Notation for local systems. Throughout this section, fix o € LSx(k) an irreducible G-local
system on X i.e., o does not admit a reduction to any parabolic P C G.

11.1.2. Our discussion will be nicest when o is very irreducible in the sense described below.

Let Aut(o) denote the algebraic®® group of automorphisms of o as a local system. Note that a
choice of point z € X (k) induces an embedding Aut(c) — G.

Definition 11.1.2.1. We say that o is very irreducible if the natural map Zs — Aut(o) is an
isomorphism; here Zx is the center of G.

Remark 11.1.2.2. Of course, for GL,, an irreducible local system is very irreducible.

Remark 11.1.2.3. Very irreducible local systems form an open substack of LS that is non-empty
when the genus of the curve is greater than 1. This follows from the existence of opers (without
singularity) on X, which are always very irreducible, cf. [BD] §3.1.

Probably very irreducible local systems are dense in LS5 (for genus > 1), but we are not sure.

Remark 11.1.2.4. It is not hard to see that Aut(c)/Zs is zero-dimensional. Therefore, the gap
between irreducible and very irreducible local systems concerns finite groups.

Ezample 11.1.2.5. For completeness, we provide an explicit (quite elementary) example of an irre-
ducible local system that is not very irreducible. The group is PG L.

Suppose k = C and X has genus 2; we freely use Riemann-Hilbert. It is simple to see that the
topological fundamental group WEOP(X ) surjects onto the symmetric group Ss3. Indeed, the former
has standard generators aq, b1, ag, be with defining relation [ai, b1][ag, be] = 1, while the latter can
be generated by elements r and s with r an element of order 3 and s a transposition with defining
relation srs = r~!. Then the map:

ar — 1, by — s, G/2|—>7"2, by — s

541 particular, Aut(c) is something classical — we ignore the finer derived structures on Aut(c).
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defines our desired surjective homomorphism.

Then S3 has a unique (up to isomorphism) irreducible 2-dimensional representation, which via
the homomorphism above induces an irreducible G Ls-local system on X. The induced PG La-local
system is also irreducible, but is easily seen not to be very irreducible.

11.1.3. Let k, € QCoh(LSé)Q denote the structure sheaf of o, i.e., the *-pushforward of k € Vect ~
QCoh(Spec(k)) along the map:

Spec(k) % LS4
11.1.4. The main result. The goal of this section is to outline a proof of the following result.

Theorem 11.1.4.1. There exists F, € D(Bung) an eigensheaf for o such that:

e F, is perverse up to shifts (i.e., locally compact, concentrated in cohomological degree 0, and
with regular singularities).

o [f o is very irreducible, the restriction of F, to every connected component of Bung is an
wrreducible perverse sheaf.

In addition, one has:

e F, is cuspidal.

e coeff™(F,) ~ k,[— dim Bung] € QCoh(LSp).

We emphasize that the argument combines work of many other authors, and some portion of
what follows is simply a matter of proving a folklore result by stringing together results of other
authors. In particular, the existence of a non-zero complex of sheaves ¥, (Theorem 11.2.1.1 below) is
the culmination of work of many authors, notably Arinkin, Gaitsgory, Frenkel-Gaitsgory, Beilinson-
Drinfeld, and not us.

We consider our contribution to be to the questions of perversity and irreducibility of F,. This is
a classical question: the above result proves [Fre] Conjecture 1.5 We highlight that it has previously
been unknown how to deduce any result of this type from the categorical properties of the geometric
Langlands conjecture.

Remark 11.1.4.2. At some points, complete proofs of some key assertions are missing in the litera-
ture. Most glaringly: we need a generalization of [BG3]; loc. cit. is written for the Borel only, and
we need the (folklore) generalization to a general parabolic subgroup.®®

Remark 11.1.4.3. In the case of general irreducible o, F, ought to be a semi-simple perverse
sheaf with irreducible factors indexed by isomorphism classes irreducible representations W; €
Rep(Aut(c))¥, with each simple factor F, 1y, appearing with multiplicity dim(WW;). We are unable
to unconditonally prove this assertion at the moment, but our methods combined with the categor-
ical geometric Langlands conjecture yield this conclusion, which seems not to have been previously
contemplated.

Remark 11.1.4.4. The condition coeff®™ (F,) ~ k,[— dim Bung] is often referred to as the Whittaker
normalization of a Hecke eigensheaf (at least, up to conventions regarding the shift). It plays a key
role for us in what follows, cf. Theorem 11.2.1.2.

55Technically, loc. cit. ignores the discrepancy between irreducible and very irreducible local systems. For irre-
ducible o that are not very irreducible, the conjecture from loc. cit. is not reasonable; cf. Remark 11.1.4.3.

56We also remark that the literature has at other times appealed to this same folklore generalization. See e.g.
[BHKT] Appendix A.
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Remark 11.1.4.5. The assumption that k is algebraically closed is used in the reference to [Ari],
and specifically to the existence of Whittaker normalized F,; otherwise, we may a priori need to
extend the ground field to obtain an oper structure (conjecturally, this should not be necessary).

11.2. Formulation of intermediate results. We now formulate a series of results from which we
deduce Theorem 11.1.4.1.

11.2.1. Existence of eigensheaves. Crucially, we have:
Theorem 11.2.1.1 (Folklore). There exists an object F, € D(Bung) such that:

e F, is a Hecke eigensheaf with eigenvalue o (see §11.3.1 for the definition).
e coeff™(F,) ~ k,[— dim Bung] € QCoh(LSy).

Briefly: the proof is via the Kac-Moody localization method pioneered by Beilinson-Drinfeld,
appealing to later developments due to Frenkel-Gaitsgory, independent ideas of Gaitsgory, and
Arinkin. We review the relevant results in Appendix A.

In §11.3, we will show the following result.

Theorem 11.2.1.2. Any object F, satisfying the conclusion of Theorem 11.2.1.1 also satisfies the
conclusion of Theorem 11.1.4.1.

Remark 11.2.1.3 (Application to [BD]). Suppose o admits an oper structure (without singularities).
In this case, o is necessarily very irreducible (cf. Remark 11.1.2.3). We can take F, to be the D-
module constructed in [BD] §5.1.1.;>7 that F, is Whittaker-normalized is a special case of the
discussion in Appendix A. Therefore, Theorem 11.2.1.2 implies that the eigensheaves constructed
in [BD] are perverse sheaves with irreducible restrictions to each connected component of Bung,
answering in the affirmative a question of Beilinson-Drinfeld (see [BD] §5.2.7).

11.2.2. Cuspidality. We have the following result:

Theorem 11.2.2.1 (Braverman-Gaitsgory). Let P C G be a parabolic subgroup with Levi quotient
M. Let P C G be the dual parabolic.

Let QCoh(LSs) p € QCoh(LSs) denote the full subcategory of objects supported (set theoretically)
on the image of the (proper) morphism LSp — LS.

Then the composition:

D(Bunyy) B, D(Bung)
maps into the full subcategory:
D(Bung) & QCOh(LSé)p C D(Bung) & QCOh(LSé) = D(Bung).
QCoh(LS ) QCoh(LS)
Proof. For P = B, this follows from the Hecke property of Eisenstein series shown in [BG3] Theorem
8.8 (see also loc. cit. Theorem 1.11).

In general, it is expected that the results of [BG3] generalize without major changes to parabolics.
In particular, the assertion of the present theorem is asserted (and refined) by Gaitsgory in [Gai6]
Proposition 11.1.3.

O

57In [BD), our o is denoted F and our F, is denoted M.
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Let LSiéred C LS denote the open parametrizing irreducible G-local systems: i.e., LSE,red is the

complement to the images of the maps LS — LS for P +# G. Let j denote the relevant open
embedding.

By adjunction, we have adjoint functors:

j*: D(Bung) 2 D(Bung) ® QCoh(LSiged) D s
QCoh(LSg)

with j, being fully faithful.
Corollary 11.2.2.2. For M a Levi besides G, the composition:

D(Bunyy) B, D(Bung) EAN D(Bung) ® QCoh(LSigEd)
QCoh(LS)

1S zero.

As cuspidal objects of Bung are exactly those objects in the right orthogonal to Eisenstein series
along proper parabolics (cf. [DG2] §1.4), we obtain:
Corollary 11.2.2.3. Any object of D(Bung) in the essential image of the functor:

jo: D(Bung)  ®  QCoh(LSE*!) — D(Bung)
QCOh(LS@)

s cuspidal.

Remark 11.2.2.4. The geometric Langlands conjectures predict that conversely, any cuspidal object
of D(Bung) lies in the essential image of the above functor. This converse appears to be out of
reach using present methods.

11.3. Proof of Theorem 11.2.1.2.

11.3.1. Let D,(Bung) denote the category:

Dy (Bung) == Homqcon(Ls,) mod(Vect, D(Bung)) ~ D(Bung) ~ ®  Vect
QCoh(LS )

where QCoh(LS ) acts on Vect via the symmetric monoidal functor of pullback along o : Spec(k) —
LSs and we are using self-duality of Vect in the above identification.

By definition, a Hecke eigensheaf with eigenvalue o is an object of this category D,(Bung).

Let D;(Bung) € D(Bung) denote the full subcategory generated under colimits by the essential
image of D,(Bung) — D(Bung).

We now have:

Lemma 11.3.1.1 ([AGKRRV1)). (1) Every object of Dz(Bung) lies in Shvyi;,(Bung) and has
regular singularities.
(2) The embedding Dz(Bung) — Shvyi,(Bung) extends to a decomposition:

Shvy,(Bung) = Ds(Bung) x Shvyy, 40 (Bung).
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Proof. These are all structural results from [AGKRRV1].

That every object of Dz(Bung) lies in Shvy,(Bung) (and in particular, has regular singularities)
is [AGKRRV1] Proposition 14.5.3 combined with loc. cit. Main Corollary 16.5.6.

The asserted product decomposition follows from [AGKRRV1] Corollary 14.3.5.

Remark 11.3.1.2. Only (2) above uses irreducibility of o.

11.3.2. By Lemma 11.3.1.1 (2), the subcategory:

Dz(Bung) C Shvy,(Bung)

is closed under truncation functors for the natural ¢-structure on the right hand side; therefore, this
subcategory inherits a canonical t-structure (uniquely characterized by t-exactness of the above
embedding).

11.3.3. We now consider the functor:

coeff™ : D5 (Bung) — QCoh(LSE™™)

given as the restriction of coeff™® (in its Shva;, incarnation, cf. §10.2.2).

By the argument of §1.6.2, combining Theorem 8.0.0.1, Theorem 7.1.0.1, and [AGKRRV1] The-
orem 1.4.5, we find that the functor:

coeff [dim Bung] : Shvyip (Bung) — QCoh(LSES“)

is t-exact. The same applies for coeff%nh.

Moreover, by Corollary 11.2.2.3, any object of Dz(Bung) is cuspidal, hence, by [Ber3], tempered.
Therefore, Theorem 10.3.3.1 implies that Coeff%“h is conservative, as well as t-exact (up to shift).

11.3.4. Irreducible case. We now clearly obtain the assertion of Theorem 11.2.1.2 in the case of
(possibly not very) irreducible o.

Namely, for ¥, € D,(Bung) as in the statement of the theorem. We abuse notation in also
letting F, denote the corresponding object of Dz(Bung).

We have already noted that any object of Dz(Bung) has regular singularities and is cuspidal.
For i € Z, t-exactness of coeff*™ yields:

Coeﬂ'enh (Hz (ﬁta )) — Hierim Bung Coeﬁcenh (S'ra) )

By assumption on F,, the right hand side vanishes for ¢ # 0. As coeff™ is conservative, this means
H'(F,) =0 for i # 0, so F, is ind-perverse.

We prove that F, is perverse in Remarks 11.3.5.2 and 11.3.6.1 below.
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11.3.5. Very irreducible case; G is semi-simple. We now prove Theorem 11.2.1.2 for o very irre-
ducible. The argument is more direct for G semi-simple, so we impose this assumption at first.

Recall that the connected components of Bung are labeled by elements ¢ € TrTIg(G). For ¢ €
w?lg(G), let Bung; denote the corresponding connected component and let ¥, = @, —— G)i}'f, denote
the decomposition of F, by connected components (so F§ is the restriction of F, to Bung,).

It suffices to show:

Lemma 11.3.5.1. (1) For each c € ﬂ?lg(G), JF¢ is non-zero.
(2) The length of T, € D(Bung)® as a perverse®® sheaf is < |7T?lg(G)’.

Indeed, this suffices as we then have (for ¢ denoting length):

TEG) < Y UTS) =UT) < 71 H(G)]
cem®(G)

with the first inequality being (1) and the second being (2); this forces the inequalities to be
equalities, which then forces each summand to be exactly 1, as desired.

Proof of Lemma 11.3.5.1. First, (1) is immediate from the eigensheaf property, since F, is non-zero.

Alternatively, we can see this from the Whittaker normalization. Calculating coeff p(F,) from
coeff™(F,) = ko[- dim Bung] (as in §10.2.3), we find that coeffp(F,) is non-zero for every D;
however, by definition, we have:

coeff p(F,) = coeff p(F7)
where ¢ € ﬂ?lg(G) is the class represented by the cocharacter (- deg(Q%)) — deg(D). This clearly
implies that J5 must be non-zero for each c.
We now prove (2). Note that any subquotient of F, € D(Bung) also lies in Dg(Bung)”. As
coeffS"™[dim Bung] is conservative and t-exact, it follows that:
U(TF,) < £(coeff™(F,)[dim Bung]) = £(ky). (11.3.1)
But k, € QCoh(LSGY)QQ is calculated as a pushforward along the composition:
Spec(k) = BZxs — LS

where the second map is a closed embedding by very irreducibility of o. Therefore, the length of
ko is the same as the length of the regular representation of Zx. As Z5 is finite abelian, we have:

1
(ko) = Zg] = |71 %(G)]

as desired.

O
Remark 11.3.5.2. In the case of (not necessarily very) irreducible o, the statement of Lemma
11.3.5.1 (2) should instead say ¢(F,) < > dim(W;) for notation as in Remark 11.1.4.3, i.e., the
W; are isomorphism classes of irreducible representations of Aut(o), the automorphism group of
o. We note that the same argument as in Lemma 11.3.5.1 (2) yields this bound. As in Remark

11.1.2.4, Aut(o) is a finite group (when G is semi-simple), so this upper bound is finite. We again
reiterate: the categorical geometric Langlands conjecture predicts that this upper bound is an

587 priori, F is ind-perverse. The finiteness in this bound amounts to perversity.
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equality; however, it is not clear how to a priori obtain the lower bound in this setting without the
categorical conjecture.

In particular, this estimate implies that F, is perverse (not ind-perverse) under this relaxed
hypothesis, resolving a leftover point from §11.3.5 (for G semi-simple).

11.3.6. Very irreducible case; general reductive GG. In the previous section, it was important that F,
ultimately had finite length, so that the inequality (11.3.1) was forced to be an equality. In turn,

this corresponded to the geometric fact that LS is Deligne-Mumford in a neighborhood of o. This

will not be the case when ﬂflg (@) is infinite; we describe the remedy below.

Let Z¢ be the connected component of the identity in the center of G. Let AZ% C A be the

sublattice of coweights of the torus Zg. Note that the torus dual to Z is G?, the abelianization
of G.

Fix = € X (k) a k-point. This choice yields®® an action of the lattice A zg, on Bung. It also yields

a map LSz — BG by restriction of a local system to € X, and then by composition, a map
LSG — Béab.

These are compatible in the following sense. The action of QCoh(AZg;) (with its convolution
monoidal structure) on D(Bung) is the same as the one obtained from:

QCoh(Azs) ~ Rep(G*”) = QCoh(BG*") — QCoh(LSs;) ~ D(Bung).

Indeed, this is an immediate consequence of the construction of the spectral action (via Satake)
and a basic compatibility of geometric Satake.

Therefore, up to trivializing® the restriction of ¢ at &, we obtain a commutative diagram:

D, (Bung) Vect

L

Ds(Bung /Azs) = Ds(Bung)" % ————— QCoh(LSE™ x  Spec(k))

l B@Gab

Dz(Bung)

enh
coeffg!

QCoh(LSIE™).

Here the left arrows are forgetful functors, and the right arrows are the evident pushforwards.

Observe that LS‘"GSStr x  Spec(k) is Deligne-Mumford in an open neighborhood of the point o.
B@Gab
Therefore, the analysis of §11.3.5 goes through when considering the middle arrow, up to replacing
W?lg(G) with the finite group Tr‘flg(G/Zg). Noting that for each ¢ € ﬂflg(G) = mo(Bung), the map
Bung — Bung / Az is the embedding of a connected component, this clearly yields the result in
G
the case of general G and very irreducible o.

59Via the natural map [\Z% = (Grzg,z)md — Bunzg and the evident action of Bunzg on Bung.

60This has the effect of simplifying the notation below by removing certain twists involving this restriction. In
other words, this trivialization is innocuous and chosen out of laziness.
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Remark 11.3.6.1. Combining the above method with that of Remark 11.3.5.2 yields the perversity
(i.e., local compactness) of F, for general G and irreducible o; specifically, this shows that the
restriction of F, to each connected component of Bung has finite length. This finally resolves the
leftover point from §11.3.5.

A. EXISTENCE OF HECKE EIGENSHEAVES VIA LOCALIZATION

In this appendix, we prove Theorem 11.2.1.1, the existence of Whittaker-normailzed Hecke eigen-
sheaves (at least when k is algebraically closed). The construction of F, from loc. cit. is via the
localization construction of Beilinson-Drinfeld developed in [BD], using refinements of the critical
level Kac-Moody theory due to Frenkel-Gaitsgory and Arinkin’s existence of oper structures on
irreducible local systems.

At times, we use mild extensions of existing results that are not well recorded in the literature.
In general, we point to [ABGRR] and [CF] for an introduction to the relevant circle of ideas.

We reiterate that we do not claim originality for the material here, which we generally consider
to be folklore consequences of the work of others.

A.1. Background on opers and localization.

A.1.1. Opers with singularities: local aspects. Let x € X (k) be a marked point with coordinate t.
We let D, = Spec(k[[t]]) be a disc and let A\ € AT be a dominant weight. Recall that there is a
scheme Op)Gix of opers with singularity X (at z). These are defined in [FG2] §2.9, where they are

denoted Opé\’reg. We remind that these opers are G-local systems on the disc D, (i.e., points of
BG) equipped with extra structure.

o

Remark A.1.1.1. We remind that any k-point of Ops(D), the indscheme of opers on the punctured
disc, underlying a local system on D, (rather than D,) lies in Opg , for some A6t

A.1.2. We use Kac-Moody notation as in [Rasb]. In particular, we let Gerit-mod(©) be the Kazhdan-
Lusztig category at critical level, which we also denote by Kl . Let Vé‘rit € ﬁcrit—modG(O)’QQ be
the Weyl module, i.e., the module indg‘[*[r;ﬁ(V’\) where V* is the G-representation corresponding to
A, acted on by g[[t]] via the evaluation homomorphism g[[t]] — g.

crit*

By [FG4] Theorem 1, there is a natural action of Fun(Op)Gi ) by endomorphisms on V2 ... There-
fore, we obtain a functor:

QCoh(OpY, ) = Gerit-mod“(©) Al
G,x

sending the structure sheaf in the left hand side to the Weyl module Vérit.

Moreover, by [FG1] Theorem 1.10, the above is compatible with the Rep(G) actions on both sides.
Specifically, the map Opg , — BG induces a symmetric monoidal functor Rep(G) — QCoh(Opg e

while Rep(G) acts on the right hand side via geometric Satake. For us, [FG1] Theorem 1.10 amounts

to the assertion that the above functor is naturally Rep(G)-linear. We refer to [Rasb] Corollary 7.10.1
for homotopical details regarding a similar situation.

Notation A.1.2.1. Later, we will wish to explicitly note the dependence on the point z. We will

write Vé\fﬁ € KLtz in this case.

61Gce for example the second equation of [FG3] §2.2, where this is stated explicitly. We remark that, as in loc. cit.,
the assertion holds for k replaced by any reduced k-algebra, but not for non-reduced algebras.
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A.1.3. Suppose x € X(k) is a marked point, which the reader should imagine was implicitly
equipped with the coordinate t in the previous discussion.

There is a localization functor:
LoCy : Gerit—mod (@) — D(Bung)

where we implicitly choose a square root of the canonical bundle on Bung, as in [BD] §4, to identify
Deyit (Bung) with D(Bung).

This functor is equivariant for the action of the spherical Hecke category at x acting on both

sides, and in particular, Rep(G)-linear for Hecke functors (again: at x).
We recall that Loc, (V2.,) is the critically twisted D-module:
inderit (VM) € Dgit(Bung) ~ D(Bung)

induced from induced from the vector bundle V** := ev*(V*) where where the map ev, : Bung —
BG takes the fiber at « of a G-bundle on X.

A.1.4. By composition, we obtain a Rep(G)-linear functor:

Loc, : QCoh(Op/C\;,m) — D(Bung)
sending the structure sheaf to inde (VA?).

A.1.5. Ran space extension. We now use a variant of the above with multiple points, working over
Ran space.

Fix points x1,...,2, € X. We let S = {x1,...,2,} € X. We also fix dominant weights
A,y Ane

Let Ranx g denote the marked Ran space, as in [Gai3]. As in [ABGRR] and [CF], there is a

natural category Klcrit,Rany Over Rany gr with fiber ﬁcritfmodG(O) at a marked point = € X (k).
We can pull it back to Ranx s4r to obtain a similar category KLcrimRanX, g

The category Rep(G)rany acts by Hecke functors on KLeyit Rany - We can pull back to Ranx g 4r

to obtain an action of Rep(G)Rany s 0N Klerit Ranx -

. iz . .
We also have relative affine scheme Och::R;? — Ranx g qr whose fibers parametrize a finite set
s X,S =

¥ C X containing our marked points S, plus a G-bundle with connection on the formal completion
to X at X, which is equipped with an oper structure of type \; at each z; € S and type 0 (i.e.,
regular) at each y € ¥\ S.

A.1.6. We let:

Ai s
VZ ‘ S Kl—crit,S = ®§L:1K|—crit,aci

crit

AT
crit *

denote the object X7 |V

By unital chiral algebra techniques, there is an induced object:
VZ i

crit,unit € KLCrit,RanXYS

obtained by inserting the vacuum representation at points away from S.
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Using standard (non-derived!) chiral algebra techniques, we readily obtain an extension of [FG4]
that yields a (D(Ranx,g)-linear) functor (generalizing (A.1.1)):

QCoh(OpZ ™ ) = KleritRanx s (A.1.2)

doAixg

crit,unit* Moreover, this functor is naturally

sending the structure sheaf on the left hand side to V

Rep(G)Rany g-linear.

A.1.7. We can then compose with the Rep(G)Rany g-linear localization functor:

LocRany g * Klerit,Rany, s — D(Bung x Ranx g)

to obtain a Rep(é)RanX, g-linear functor:

QCoh(Opg}){;ﬁ( S) — D(Bung x Rany g).

Taking cohomology along Rany g then yields a82 Rep(G’)RanX,S’indep = Ran(é)RamX,indep—linear
functor:

LocRany s : QCoh(OPZ ™" )inaep — D(Bung). (A.1.3)

Remark A.1.7.1. We abuse notation in omitting the divisor > A\;z; from the notation Loc.

A.1.8. Globalization. Now let Ongb’Z % denote the scheme of global opers with singularity, i.e.,

G-local systems on X with B-reductions as a G-bundle satisfying the usual oper condition away
from S = {x1,...,z,} and satisfying the version with singularity \; at ;.

There is a natural symmetric monoidal functor:

LOCOpGv : QCOh(Osz,li;i; S)il’ldep N QCOh(Ongb’Z )\ixi)

admitting a fully faithful right adjoint. In particular, Locop,, is a quotient functor.

It follows from the constructions that (A.1.3) factors as:

QCOh(OpZ A )indep

G7Ranxys

Locg,
LOCOpGJ/ any g

The functor Locg°P is a priori Rep(é)RanX, ¢ indep-linear; but as Rep(@)RanX’ s.indep acts through
its quotient QCoh(LSx), this functor is actually QCoh(LSx)-linear.

62Here and elsewhere, the subscript (—)imdep is taken to mean the independent category, see [Ber2] for detailed
discussion.
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A.1.9. Next, we claim that there is a commutative diagram:

lob,> " \;jz;
QCoh(Op% 2 ) -
LOCglobJ/ \ (A14)
coeffert (—)
D(Bung) QCoh(LSs)
where 7 is the natural map Ongb’Z Aii_y LS.

Indeed, since these two functors QCoh(Opé}Ob’Z ’\m) — QCoh(LSx) are QCoh(LSx)-linear, it

suffices to produce a commutative diagram:

QCoh(Op%Ob’Z /\ixi)

LocglObJ/
coeffen(—)
D(Bung) —— QCoh(LSy)

L(LSg,m«(—))

DISgm() >,

Equivalently, it suffices to produce a commutative diagram:

glob,> \;z;
QCOh(OpG ) F(Opg}Ob’E Az -)
G b
Locglobl \
D(Bung) coeft Vect.

By construction of Loc8'°P and [FG4] Theorem 2, it suffices to construct a commutative diagram:
v
KLerit,Rany s —— D(Ranx s)

LOCRanX7Sl lCdR(RanX,Szf)

D(Bung) ool Vect.

Here the functor ¥ displayed above is the quantum Drinfeld-Sokolov functor (at a point: this functor
is BRST for n((t)) twisted by the standard character).

The necessary commutative diagram now follows from [Gaib] Corollary 6.4.4 and Proposition
7.3.2.93 64

A.2. Proof of Theorem 11.2.1.1. Let us return to our fixed, irreducible local system o € LS (k).

First, we note a certain subtlety regarding opers. The “right” definition of opers is given in [Gai6]
and involves fixing the induced T-bundle to be p(€2x). This convention differs from the one used in
[BD] and [Ari|; we refer to the latter notion as BD opers to distinguish. When G is adjoint, the two

631n fact, Theorem 5.1.5 from [Gai5] immediately yields a stronger statement than we are using here. However, it
references a certain functor denoted in [Gai5] by D-S¥¥  and whose construction is not given there. There is folklore
knowledge about how to construct this functor, so this point can be overcome; still, we prefer to circumvent it using
the above simplification.

64Note that [Gai5] does not account for the shift [— dim Bun$] in the definition of our functor coeff. This shift is
explained in [CF] Theorem 4.0.5 (see also [CF] Example 4.0.4 and the appearance of CT5"ted in §2.4).
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notions coincide. When G has connected center, any BD oper structure is easily seen to lift to an
actual oper structure after restricting to an open.%® In general, the latter assertion is not evident.%

With that said, let us first assume G has connected center. Then by [Ari] Theorem A (and
more precisely, its Corollary 1.1), there exists a dense open U C X such that o|y admits a BD
oper structure (without defect on U). By assumption on G, up to further restricting U, o therefore
admits a “true” oper structure. By Remark A.1.1.1, this means that there exists a A T-valued divisor

S~ A\iz; on X such that o lifts to a k-point y, € Opg(ﬂo’Z i

Finally, take:
F, = LocP (K, )[— dim Bung]
for ky, € QCoh(Ongb’Z /\m) the skyscraper sheaf at the point x,.

That F, is a Hecke eigensheaf follows from QCoh(LS)-linearity of Loc#°P. The Whittaker
normalization:

coeff™(F,) ~ k,[— dim Bung]
follows from (A.1.4).

Finally, let us extend to general G. We have the central isogeny G := [G,G]* x Z(G)° — G,
where [G, G|*¢ is the simply-connected cover of [G,G] and Z(G)° is the connected component of
the identity in the center Z(G).

Note that o induces a Gy-local system 0¢,- By [GR1] Theorem 8.4.8, there is an equivalence:
a: D(Bung,) ® QCoh(LSx) ~ D(Bung)
QC

oh(L le)
of QCoh(LSx)-module categories. Under this equivalence, the induced functor:

D(Bung,) — D(Bung)

is given by !-pushforward, and therefore sends Poincg, 1 to Poincg,. Therefore, the equivalence a
commutes with forming coeff™™ (for Gy vs. Q).

Taking the fiber of a at the point o, we obtain an equivalence:

Dgé1 (Bung, ) ~ D,(Bung)

between eigensheaf categories, and this equivalence is compatible with taking coeff, so we see that
the existence of a normalized eigensheaf for o5 implies the same for o.

Remark A.2.0.1. The reader might object to the citation to [GR1], which builds on the results of
this paper and proves much stronger results than we are considering presently. However, §8 from
loc. cit. is self-contained and can be read independently from the rest of [GR1].

65Namely, the B-bundle Pz of our oper has induced T*!-bundle being p(2%). The obstruction to lifting this
isomorphism to T-bundles is a Zxs-bundle on X, and this is necessarily Zariski-locally trivial when Zx is a torus.

66The issue is about the fixed square root of Q% implicit in considering p(Qx).

E.g., if G = SLz, a BD oper is a rank 2 bundle & with connection V, a flat isomorphism a : A%(&, V) ~ (0,d) and a
line bundle £ C € such that V maps £ isomorphically onto (£/£) ® Q% . Note that this data induces an isomorphism
o: L%~ Q4. A “true” oper is one where £ is fixed to be the once and for all fixed square root of Q.

Note that if we have a BD oper structure on (&, V)|u, there can be significant difficulties in comparing this to a
true oper structure on U; the BD oper structure defines a square root of €}, that may not extend to a square root of
Qk.
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