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1 Introduction: 02/09/2025 (Minghan)

Scribe: Minghan Sun

Prerequisites

There are three main prerequisites for the course:
1. Algebraic geometry on the level of Hartshorne.
2. Algebraic topology.

3. Representation theory.

1.1 Abelian Extensions of Q

In his proof of Quadratic Reciprocity, Gauss uses the following result.

Theorem 1 (Gauss sums). Suppose p is a prime. We have three identities.

1. Ifp=1 (mod 4), then

= 2 (e »

z€(Z/p

Here (), = e2™/P s q primitive p-th root of unity and (%) s the Legendre symbol, i.e.
1 ' F?
G- ™ @
D —1 else.
2. If p=3 (mod 4), then
. T\ L,
sivie ¥ (2)a Q
z€(Z/p)*
3. If p=2, then
£V2=(s+ ¢ (4)

Example 1. Suppose p = 3. Then we have

T\ o 1 2 9
Z (g) (3 = <3> G+ <3) G
z€(Z/3)*
=(— ¢
= /34,
as asserted in Theorem [l

Remark 1. The interested reader can find proofs of the Gauss sums (Theorem in Serre’s A Course in
Arithmetic.

Theorem [1| implies the following general fact.

Proposition 1. Suppose p is a prime. Then

Q(¢p) ifp=1 (mod4),
Q(vp) € Q) ifp=3 (mod4), (6)
Q(¢s) ifp=2.



Let’s say a few words about the structure of the cyclotomic fields Q({n).

Theorem 2 (structure of cyclotomic fields). For all N, Q((x) itself is an abelian extension of Q. Moreover,
the map x : Gal(Q({n)/Q) — (Z/n)* given by o — x(o) such that o({n) = 19\‘,(0) is an isomophism.

One of the greatest gems of classical number theory is the following generalization of Proposition [T}

Theorem 3 (Kronecker-Weber). Suppose F/Q is an abelian Galois extension. Then there exists some N
such that F C Q({N)-

Remark 2. So far, we have given a complete and explicit description of all abelian Galois extensions of
Q. In the next subsection, we will begin to discuss class field theory (CFT), which concerns abelian Galois
extensions of what are called “global” and “local” fields.

1.2 Basic CFT

We begin by defining global and local fields.

Definition 1 (number fields and function fields). A number field is a finite extension of Q. A function field
is a field of the form F,(Xo), where X is a geometrically connected smooth projective curve and Fy(Xo) is
the field of rational functions on Xj.

Definition 2 (global fields). A global field is either a number field or a function field.
Definition 3 (local fields). A local field is R, C, a finite extension of Q,, or a finite extension of Fq((¢)).
Remark 3. We can equivalently define a local field as a locally compact (topological) field.

Definition 4 (places of global fields). Suppose F is a global field. A place of F is a norm v on F such that
F, (the completion of F with respect to v) is a local field.

Example 2. Q has a place whose completion is R and also a place for each prime p whose completion is Q.
The places of Fq(Xo) are indezed by closed points on the curve Xj.

Definition 5 (adeles). Suppose F' is a global field and P the set of places of F'. We define the adeles of F,
denoted A g, as the additive subgroup of the product

1% (7)
vEP
consisting of elements x = (x,) such that x, € O, almost everywhere (i.e. for all but finitely many places).

Remark 4. In Deﬁm‘tion@ if v is a nonarchimedean place (i.e. not R or C), then O, denotes the ring of
integers of F,.

Remark 5. Note that we have a natural diagonal embedding v : F' — A g mapping F to each of its completions.
When we study global fields in number theory, we often first work with local fields and collect our results
into the adeles. Then, the real work consists in understanding the map .

Lemma 1 (adeles of Q). We have
Ag=(Z®Q) xR=(ZxR)®Q, (8)
where 7, = fm Z/n.
Proof. Left as an exercise to the reader. O
Proposition 2. Suppose F' is a global field. We have two facts.
1. F, regarded as a subspace of Ap via the diagonal embedding v : F — A, is discrete.
2. Ap/F is compact.

Remark 6. Proposition [3 roughly says that the relationship of F to Ap is somewhat analogous to the
relationship of Z to R.



2 More Adeles, CFT, etc.: 04/09/2025

Scribe: Mazx Steinberg
Today, we will discuss more on adeles, CFT (not conformal field theory), etc.

2.1 Structure of Non-Archimedean Local Fields
Let K be such a field. By definition (or by classification), K is a finite extension of Q,, or Fq(()).

2.1.1 General structure

We have Ok C K the ring of integers in K. It is the unique compact open, integrally closed subring.
Example 3. Og, =Z,, K/Q, is finite, Ok is the integral closure of Zy,. If K =Fq((t)), Orx = Fq[t].

We can think of O = {x € K’|x| < 1} w.r.t a suitable norm (i.e. the norm generating the topology). We

recall that Ok is a DVR (discrete valuation ring), i.e. 3'm # 0 prime (maximal) such that m = (@) (called
the “uniformiser”) and Ok /mg = k, the residue field, which is a finite field.

If K is a local field, a finite extension L/K (which automatically makes L a local field) is unramified if
O1/Ok is an étale extension ( <= wg generates me, ).

Reminder: étale extensions are a generalisation of separable field extensions to commutative rings.

Example 4. Fqn ((t)) is unramified over Fy((t)). All unramified extensions have this form.

It is a fact that the following groupoids are isomorphic:

{L/K unramified} = {k'/kx}
L OL/mL

Motto: unramified extensions of K are in bijection with extensions of its residue field.

Example 5. (Z3)s ~ F3 (where the left-hand side denotes Zs, the 3-adic integers, localised at the prime 3),
Fo / F3, Fg = F3[\/2] and the corresponding unramified extension is Q4[v/2].

Reminder: if k is a field, Gal(k) := Gal(k*?/k) = @Gal(k’/k:) with k’/k a finite Galois extension with
k*P/E'/k. If k is a finite field, k = Fqy,q = |k|, there is a distinguished element Fr = Fr, € Gal(k), with
Fr(z) = 29,2 € k. This fixes F, because 27 = x exactly for € F, and is an automorphism of F, by
finiteness and (x 4 y)? = x% 4 y?. There is a canonical map

Z — Gal(Fy)
1+ Fr,

The profinite completion of this map is an isomorphism 7 ~ Gal(Fy).

Remark: the Weil group Wy, of Fy is Z C Gal(Fy) generatd by the Frobenius. It is an error in nature
that Gal(Fy) = 7 not Z and the Weil group corrects this in an ad-hoc way.

Remark: You can picture SpecF, as

with the idea that m = Z just like how Gal(F,) “=" Z.

Claim. Let K be non-Archimedean, k its residue field. Then the earlier discussion gives a map Gal(K) —
Gal(k) ~ Z: We construct K“"" C K*% the union of all finite unramified extensions. Then Gal(K) :=
Aut(K*?/K) — Aut(K""" /K) ~ Aut(k/k) by the previous discussion.

Definition 6 (Weil group). For K a local field, the Weil group of K, Wy, is the preimage of Z C 7 under
this map, topologised in a natural way.



2.2 Main Theorem of Local CFT

Theorem 4 (Main Theorem of Local CFT). W ~ K> “canonically”. In fact, the following diagramme
commutes:

R

W[a{b KX

~ A

Wy, =7

Remark: (by inspection) this also holds for Archimedean local fields.

A note on the structure of K *: there is a valuation K* - Z, the unique valuation with v(w) = 1. In
fact, kerv = Of.

Corollary 1. Gal(K)® ~ (K*)", where (—)" is the profinite completion functor.

2.3 Global Setting
Let F' be a global field and v a place of F', and F,, the corresponding local field.

F—>F,

l I

C
Fsep = Efep

This gives rise to a map Gal(F,) — Gal(F') (well-defined up to conjugation). (If you want to learn more,
look up “decomposition group.”)

If we want to understand Gal(F)*®, we know it receives a map Wi — Gal(F,)* — Gal(F)"’. We can
write the diagramme:

FX—>W

[N i

Gal(F,

l

Gal(F)ab
These combine into a map Ay — Gal(F)e®
Theorem 5 (Main Theorem of Global CFT). We have the following:
1. The composition F* C A} — Gal(F)® is trivial (“Artin reciprocity”)
2. The induced map (A} /F*)" ~ Gal(F)?

Example 6. F = Q, Ay = R” XH/Q;, and Aj /Q* = RZOXHZ;. The map is (Too, (zp)) +>
(Jzoo] [Tpvrt=»), (|zp]p prvp(a:p))),

Then (Ag / Q) ~[[Z, = 7" . Last class we discussed Gal(Q(¢n)/ Q) = (Z /n)*, and passing to the
inverse limit gives rise to Global CF'T.



3 Etale Fundamental Groups and the Analytic Jacobian: 09/09/2025

Scribe: Zachary Carlini

3.1 Etale Fundamental Groups

For a more detailed treatment of this material, see [Gro71].

Let X be a connected scheme (which is usually assumed to be normal). Let K be a separably closed field,
and let z¢p be a K-point of X. From this data, the theory of etale fundamental groups produces a profinite
group 7$¢(X, z9). We will suppress x¢ from the notation when the choice of zg is unimportant, so we will
write 7$¢(X) instead.

Example 7. For k a field and K its separable closure,
7t (Spec k, Spec K) = Gal(K/k).
Example 8. For X a smooth variety over C and xo € X a closed point,
T (X, mo) 22 my P (X, )",

where X * denotes the analytification of X, 7rt0p denotes the topological fundamental group, and " denotes
the profinite completion.

The étale fundamental group has the following characterization: an action of the étale fundamental group
on any finite set S corresponds to a finite étale cover Y — X together with a bijection between S and the set
of sections of the fiber Y x x kg — xo. Equivalently, we can define 7$*(X, zg) to be the automorphism group

of the functor Sch?}lte “tale s FinSet which sends a cover 7 : Y — X to the set of y € Y/(K) with n(y) = (.

It X — X is a finite étale cover between connected, smooth varieties over C, then the induced map
X2 — X®" is a finite covering in the sense of algebraic topology. The Riemann Existence Theorem provides
a converse.

Theorem 6 (Riemann Existence). If X is a smooth variety over C, and X — X9 s q finite cover, then
X qdmits a unique variety structure X compatible with the variety structure on X (i.e. regular functions
on open subsets of X pull back to reqular functions on X) and the projection X5 Xisa finite étale cover.

Example [§]is a corollary of the Riemann Existence Theorem.

3.2 Geometric CFT

Now, suppose K is a non-Archimedean local field with ring-of-integers Ok. Let kg be the residue field of
K, i.e. the quotient of Ok by its maximal ideal. Recall from yesterday that we had a bijection:

{L/K unramified} = {k’/kx}
L OL/mL

We may now reformulate this as a statement about fundamental groups. Namely, the map SpecOg —
Spec kx induces an isomorphism 7$*(Spec O ) = 75t (Spec kx).

We also have a map Spec K — Spec Ok . This induces a map 7t (Spec K) — 7¢*(Spec Ok ), which we can
identify with the surjection Gal(K) — Gal(k) mentioned yesterday. This gives a geometric interpretation of
our discussion of local class field theory.

Next, we will give a geometric interpretation of global class field theory in the case of function fields. Fix
a finite field F; and a smooth projective curve Xy over Fy. Let F' be the field of rational functions on Xj,
and let A be its ring of adeles. Recall from yesterday that we had an isomorphism

Gal(F)™ = (A% JF*)" . (9)



Fix an algebraic closure Fq of Fy, and let X denote the base-change X = Xy Xp, Fq. Let Uy C Xq be

open, and let U = Uy Xp, Fq. We define the Weil group Wy, of Uy to be the preimage of Z C 7 along the
map 75t (Up) — 7€t (SpecF,) induced by Uy — pt. There is an exact sequence:

1= 7U) = Wy, = Z — 0,

and we endow Wy, with the topology that makes it a topological disjoint union of cosets of 7$*(U) with its
profinite topology (note that this is not the same as the subspace topology coming from Wy, C 7¢*(Up)).

For every closed point z € Xy, let O, be the ring of integers in the completion of F' at x. There is a
homomorphism O — A* which sends f € O to the adele which is f at place x and 1 everywhere else.
Global class field theory produces an isomorphism:

wib = A</ ] ox. (10)
zeUy
The isomorphism @ is obtained from by taking profinite completions and taking the limit as Uy — 0.

Question 1 (Deep). What is the correct analog of Wy, for a number field? This is referred to as the
“Langlands group” in the literature. Constructing the Langlands group and proving that it has the desired
properties s still an open problem.

For ease of exposition, we will now specialize to the case where Uy = Xy. We want:
Wi = Faa/ T o,
zeXo

so we should unwind F*\ A* /], . x OF.
First, for each x € X, let K, be the completion of F' at . Then O, is a DVR with fraction field K, so
K} /OX = 7. Since A is, by definition, the restricted direct product of the K, we have:

A</ T] 0r = @ z=Div(Xy).
r€Xo r€Xo
Next, the map F* — KX/OX = Z sends a rational function f to its order of vanishing at z, so F* —
A [ Tl,ex OF = Div(X) sends a rational function to its divisor. Therefore, we have:
F\A* ) [T 05 = F*\Div(X,) = Pic(Xy),
xeXo

where Pic(Xg) denotes the group of algebraic vector bundles on Xy with the group operation of ®. For a
reference on divisors and line bundles, see [Har77][Chapter II.6].
Now, unramified global class field theory can be stated as an isomorphism:

Wb = Pic(Xo).

Moreover, the map Wy, — Z identifies under this isomorphism with the map that sends a line bundle to its
degree. We will construct the map Wx, — Pic(Xy), but first we will try to understand an easier toy model.

3.3 A Toy Model for Geometric Class Field Theory

Let X be a smooth, projective curve over C. From [Ser56], we have an isomorphism Pic(X) = Pic(X2%),
and from general theory we have Pic(X*") = H'(X, 0%).
From complex analysis, there is an exact sequence of sheaves:

0—2Z(1),, = Oxm P O%n — 0,
where Z(1) = 2miZ C C. Taking global sections gives a long exact sequence:
0— H' (X* 7(1)) — H" (X*,0)

— H' (X, 0%) & H? (X*,Z(1)) - 0 (11)



~

(Here, we have used the fact that the exponential map induces a surjection from Hy(X, Q) 2 C to Hy(X,O0*) =
C*). We may identify H! (X O*) = Pic(X®) and H?(X*",Z(1)) = Z, in which case d becomes
Pic(X??) des, 7. Thus, ker(d) is the group of holomorphic line bundles on X?" with degree 0, which

we denote Jac(X®"). From , we obtain a short exact sequence:
0— H" (X 7Z(1)) = H" (X 0) — Jac(X*) — 0.

If g is the genus of X, then H' (X** 7Z(1)) = Z% and H' (X", 0) = CY, so Jac(X?") = CY /Z*9 is the
quotient of a complex vector space by a lattice. In particular, Jac(X?®) acquires a natural complex-analytic
geometry, and with respect to this geometry, Jac(X?®?) is a compact, complex Lie-group. Over R, Jac(X?")
is isomorphic as a Lie group to (S1)*29, but the complex-analytic structure of Jac(X) will depend on the
complex-analytic structure of X?".

10



4 Geometric Class Field Theory: 11/09/2025

Scribe: Joakim Fergeman

4.1 Geometric Class Field Theory In Terms Of Fundamental Groups

Let us take a moment to orient ourselves. For X, a smooth projective curve over a finite field I, we saw
that class field theory for the global field F,(Xg) took the following form.
We defined the Weil group Wx, that sits in a short exact sequence:

1—7X) = Wx, = 7Z—0.

Here, X /E denotes the base-change of Xy to E. Class field theory says that we have an isomorphism of
groups:
Waz ~ Pic(X)),

where we remind that Pic(X() denotes the group of line bundles on X up to isomorphism.

We want a version of class field theory that generalizes to the complex numbers (and in fact any field).
We will refer to this generalization as geometric class field theory (GCFT). Let X/C be a smooth projective

curve over C. We have:
Jac(X)™ = Ker(H'(X*,0%) — H*(X*,Z(1))).

This is the group of degree 0 line bundles on X E| We expressed
Jac(X)™ ~ HY(X* 0)/H (X, Z(1))

as a complex manifold. We remind that if ¢ = g(X) denotes the genus of X, then dimcH'(X** O) =
dimc HO(X*®, Q). Fix a point #g € X. This induces an Abel-Jacobi map:

AJyy + X" — Jac(X)*™, = — O(z — z9).
One version of geometric class field theory states:

Theorem 7 (One version of GCFT). The map AJ,, induces an isomorphism of groups m°P(X*")ab =,
7P (Jac( X)),

The rest of this subsection is devoted to sketching the proof of this theorem. We will see that the proof
comes down to spelling out a certain compatibility between Poincaré duality and Serre duality for X?".
Recall that on general grounds, we have a canonoical isomorphism of abelian groups:

rioP(xEnyeb = pp (X0, 7).
As we saw above, the universal cover of Jac(X)" is H'(X?", O) ~ CY. Thus, we have an isomorphism:
7 (Jac(X)™) ~ H' (X, Z(1)).
Moreover, Poincaré duality states that the cup product map gives a non-degenerate pairing:
HY (X 7(1)) @ HY(X*™,Z) — H*(X* 7Z(1)).

Hence, we have H'(X*",Z(1)) ~ Homz(H'(X*",Z),Z) ~ Hy(X*",Z)P|] Combining the above, we see
that there is an abstract isomorphism:

WEOP(XaI‘)"‘b ~ WEOP(JaC(X)"“‘).

1Or equivalently, the complex line bundles that are topologically trivial.
2The last isomorphism follows from the universal coefficient theorem using that Ho(X?",Z) ~ Z is torsion-free.

11



The ”real” content of geometric class field theory is that this isomorphism is induced by the Abel-Jacobi
map AlJ,,. We formulate this assertion as the combination of two claims, which we leave as exercises for the
reader.

Serre Duality gives an isomorphism H!(X** O) ~ HO(X?2, Q!)*. We saw that Poincaré duality gives an
isomorphism H!(X?" Z(1)) ~ H,(X?",Z). Thus, we get:

Jac(X)™ ~ HO(X* QY)Y /H(X™, 7).
In particular, the combination of the two dualities provides an action
Hy(X™,7) ~ HO(X*™ QY)*, (12)

We now spell out this action. Given w € H°(X?* Q) and a closed loop 7 based at x(, we may integrate
w along 7y to get the number
/ w e C.
~

TP (X x HO(X* Q) — C.

As such, we get a pairing:
This factors through the pairing:

H{(X*™ 7)® H'(X* Q') - C.

Hence we get a map
Hy (X 7) — HO (X Qh*. (13)

Claim 1. The map induces the action .
Next, consider the Abel-Jacobi map:
AJg, : X = Jac(X)™ ~ HO (X QY /H (X, Z).

Denote by Xan s X®0 the universal cover of X*". The usual construction of Xa" is as the space of
continuous maps v : [0,1] = X,v(0) = x¢ up to endpoint-fixing homotopy. The composition

Xan — X2 gO(X* QY /Hy (X™,7)

lifts to a map -
Xoan — HO(Xx Q> (14)

Claim 2. The map sends [v] to the functional (w +— f,y w).

As such, the map X — HO(X?* QN)*/H (X", 7Z) is defined by, for x € X, choosing a path 7 from
to  and getting the corresponding functional on H°(X®* Q)* which is well-defined up to translating by
Hi (X, 7Z) via the action (12).

Combining the two claims proves the above version of geometric class field theory.

4.2 The moduli stack of line bundles

Our next goal is to give a purely algebro-geometric version of GCFT that generalizes to an arbitrary field.
As such, let k be a field, and let X/k a smooth projective curve. Consider the functor

Bung,, : {commutative k — algs} — {groupoids}

sending a commutative k-algebra A to the groupoid of line bundles on X x Spec(A).
Here is a variant. Fix a point z¢ € X (k) (assuming it exists). Consider the functor

Pic : {commutative k — algs} — Sets

12



sending a commutative k-algebra A to the set (£, «) consisting of a line bundle £ on X X Spec(A) and « is
a trivialization of £ on {zp} x Spec(A) C X x Spec(A).

Claim The functor Bung,_ is representable by an algebraic stack, and Pic is representable by a schemeﬂ

m

Let us describe the basic structure of Bung, . It has a degree map
deg : Bung,, — Z = |_| Spec(k).
nez

Informally, this map is simply given by taking the degree of a line bundle. Formally, however, one argues
as follows. Suppose we are given an element of Bung, (A4), that is, a line bundle £ on X x Spec(A).
We need to produce an object of Z(A), that is, a locally constant function Spec(A) — Z. Denote by
p2 : X x Spec(A) — Spec(A) the projection onto the second factor. Since X is projective of dimension 1, the
complex Rps (L) is quasi-isomorphic to a two-term complex €Y — £ sitting in degree 0 and 1, where &; is
a vector bundle on Spec(A). Then the function

Xz i Spec(A) = Z, x> x(E0 — &) = 1k(E2) — k(&)

is locally constant. We let deg(L) := xc + (¢ — 1) be the desired locally constant function, thus defining the
map deg : Bung,, — ZE|
Next, let us describe the ”shape” of Bung, ,. Let BG,, be the stack such that BG,,(A) is the groupoid
of line bundles on Spec(A4). Recall that BG,,, admits a smooth cover by the point scheme pt = Spec(k). We
have a canonical map
BG,, —» Bung,,, L~ Ox K L.

Fixing 29 € X (k), we get a map in the other direction:

Bung,, = BG,, L~ Ly,.

m

Let Bung, = deg™*(n). We define Jac(X) by requiring we have a Cartesian diagram

Jac(X) —— Bun%m

pt — 5 BGp

These maps combine to give isomorphisms:
Bung,, ~ BG,, x Jac(X) X Z,
Pic ~ xJac(X) x Z.
Fact: Jac(X) is an abelian variety (i.e., a geometrically connected smooth proper algebraic group).
Note that we have a canonicaEI Abel-Jacobi map:

X — Bung, — Bung,,, =+ O(x).

m)

In line with the previous subsection, the Abel-Jacobi map induces an isomorphism:

w‘ft (X)ab = Wft (Buném).

3We remind that the latter means there exists a scheme Pic such that for all affine schemes § = Spec(A), we have a bijection
of sets Homgchemes (S, ﬁ{;}) = Pic(A), functorial in S.

4We add (g — 1) to x¢ to normalize the degree map such that the trivial line bundle has degree 0.

5In the sense that it does not depend on a base point.



5 More on Curves: 16/09/2025

Scribe: David Fang
Let X be a smooth curve over k. Remember that a divisor D is a formal finite sum

Z nglx], ng € Z,x € X closed point.
zeX

An effective divisor is a divisor where n, > 0,Vx. Then we have the

Fact 1. There is a bijection:
{D divisor} < {L line bundle on with s : Oy = L|y,U € X dense}/ ~,

where ~ is up to isomorphisms of L and “shrinking U.” FExplicitly, for each divisor D we can associate the
pair (O(D),s = 1). The reverse direction is obtained by sending (L, s) to +s.

In particular, there is a bijection between effective divisors and pairs (£,s € I'(£), such that s|y # 0 for
some dense U C X. We want to generalize this to the situation of “curves over rings” instead. In particular

Definition 7. Let S be a scheme. An (effective) Cartier divisor on S is a pair (L, s) where L is a line
bundle on S, and s is a trivialization of L|y for U C S dense (resp. s € I'(L) trivializing L on some U ).

Remark 7. When we say U C S is dense, we mean that S is the minimal closed subscheme of S containing
U (schematically dense).

Definition 8. Given X,S/k as above, a relative (effective) Cartier divisor is an (effective) Cartier
divisor on X x S such that U is universally dense (i.e. for all T — S, the base change U xgT C X x T is

dense). In the effective case, we also require that coker Ox x g 2 Lois S-flat.
Morally, this is supposed to be an S-family of Cartier divisors on X.

Remark 8. For example, a relative effective divisor is dense in every fiber of S (namely, take T to be Spec
of a field in the above).

Example 9. Suppose X = Spec A, X = A'. Then X x S = Spec A[t]. Let s = f(t) = S gaitt a; € A.
This defines a Cartier divisor iff (ag,a1,...,a,) = A, and effective iff a, € A*.

Theorem 8. Let X be a smooth projective curve over k. Then there is a scheme Sym X/k such that
S — SymX <= {D an effective relative Cartier divisor on X x S}

Here Sym X =[], -, Sym" X, and Sym° X = Speck, Sym' X = X. More generally, there is a map X" —
Sym™ X, which identifies X™/S,, ~ Sym"™ X. Also, Sym” X is smooth.

Example 10. Let X = A'. Then Sym X ~ A" as follows: for a point (ag,...,an_1) € A", we can associate
the divisor of zeroes of t"™ + a,_1t" "1 + -+ + ag.

Exercise 1. Sym" P! = P,
Now return to the case where X is smooth projective. There’s an obvious map
AJ, : Sym" X — Bung_, (Lys) = L
Note that AJ ' (L) =T(L)\ 0.
Remark 9. If we work with Pic" instead, then AJ (L) = P(I'(£)) = (T(£) \ 0/G,p
Claim 1. Forn >0 (i.e. n>2g9—2,9 = g(X)), then
AJy, : Sym" X — Bung

18 smooth and surjective. In fact, it is locally a product in the smooth topology.
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Proof. Say Riemann-Roch a bunch. More precisely, if £ € Bung,_, then
H'(L) ~ H(LY @ Q')
by Serre duality. Since degQ! = 2¢g — 2, we know that if deg L > 2g — 2, then deg LY ® Q' < 0. Thus
HO(LY @ Q' =0, so HY(L) = 0 by Serre duality. But by Riemann Roch,
deg £ = dim H°(L) —dim HY (L) + g — 1 =dim H°(£) + g — 1,

so when deg £ > 0, we have
dim H°L = deg £L+1 — g.
N——"

n

We in fact have that
{£ € Bung, +s € L} — Bung

is the total space of a vector bundle, given by the pushforward of the universal line bundle on X x Bung
to Bung, (n>0). O

Remark 10. In general (without assumption on n) the space {L£ € Bung, +s € L} will be the total space of
a coherent sheaf (derived if you want) over Bung .

Upshot: there is a map
Sym" X — Bung

whose fibers are AN\0 (N = n + 1 — g). In particular the fibers become more and more contractible as
n — oco. Alternatively, after picking a base point xy € X the map

Sym" X — Jac X
has fibers isomorphic to PN ~1.

Remark 11 (A rough analogy). For a manifold M, Dold-Thom says roughly that if we take Sym™ M for
sufficiently large n, then its homotopy groups in low degree are isomorphic to the homology groups of M.
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6 Strategy for GCFT: 18/09/2025

Scribe: Soumik Ghosh
Exercise: U = Spec A[f~1] C S = Spec A is dense <= f is a non-zero divisor.
Want to prove: We have the isomorphism

7 (X) S 7 (Jac X)
= 7T(11b(X) = ﬁft(Bun%;m)

Remark 12. Th etale fundamental group does not generally satisfy Kinneth in charp > 0. But, it is true
for proper varieties/k = k
Motto: enemy= wild ramification at co.

If A is an abelian variety (smooth, connected, proper group scheme), w$t(A) is abelian.
Idea: We have the group law m : A x A — A induces a commutative diagram

H(Ax A) —"— wft(A)

1 X T
prazp Ql A{ this is the usual group structure

T (A) x w8(

6.1 Structure of ¢ (X)

¢t is a pro-finite group.
7¢® is pro-(finite, abelian) group.

= 7 ~T], prime(ﬂ-%b)l a product of pro-abelian [-groups.

Remark 13. [ # p, (7¢%); behaves like Hy(e,7Z;) (it is: H{ (e, 7))
If | = p, then it is more complicated.

. 0ifi#p
Example 11. (n{’(A")); = {inﬁmte ifl=p

6.2 Strategy for GCFT (after Deligne)

We prove: Hom(m§!(Jac),e*) ~ Hom(7§!(X),e*) where e = Q where | # p or e = finite extension of Q.

It suffices by Pontryagin Duality to prove this assertion.

Recall from topology: If M is a connected manifold and we have a group homomorphism 71 (M) £ GL,, ()
where e is a commutative ring, then we have the bijection

{m (M) L GLn(e)} > {local system of rank n free e-modules}

There is a theory of [-adic (etale) sheaves in algebraic geometry.
finite of order prime to p

Fix A, a commutative ring such that it is € < O,, e/Q; algebraic extension
e/Q; algebraic extension

For all Y, Noetherian scheme, we have lisse(Y, A) C Shv(Y, A).

We write Shv(Y, A)¥ for the abelian category version.

If Y is connected, Lisse(Y,A)¥ = Rep? ,(7¢*(Y,y)) ie continuous representations of m¢*(Y,y) on A-

modules.

We have functors f*, f. for Shv.

Fix e to be an algebraic extension of Q.

We have the map

restriction along AJ

{rk1 lisse sheaves on X}

{rk1 lisse sheaves on Jac X'}
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Claim: This is an equivalence.
Strategy: Produce

{rk 1 lisse sheaves on X} —— {rk1 lisse sheaves on Bung, }

—

{rk 1lisse sheaves on X}

Definition 9. o is lisse on X = o™ € Shv(Sym" X)

ocX- Ko = ®pr2‘a € Lisse(X") < m(X)" — (GL;)" = GL;»

i=1

These are Sy, -equivariant sheaves where S, is the symmetric group.

We have
add,.(c X --- K o) € Shv(Sym™ X)

where

add, :X™ — Sym" X
(X1, p) — Z[mz}

The S,-equivariant structure becomes an action of S,, on add,,(¢®"). I take o(™ := add,,, (¢®")5"

Explicitly: fiber of o®" at (z1,22,...,2,) s 04, @ -+ @ 0,

fiber of add,,(c®") at D is @D:Zi 2, Oz ® ...0z, and the action of S, changes the ordering. Say
D = [z] + [y] with & # y. Then the fiber is 0, ® 0, ® 0y ® 0, = space of invariants is isomorphic to
ox ® oy. IF D = 2[z], then the fiber is 0, ® 0,, so the space of invariants is ~ Sym? 0.

Say D = ZM#% n;x;. So we get the invariant to be ®; Sym™ o,, Special Case: r = 1, then Sym" o,
also has rank 1 and 038}" = Sym" X. So ¢(™ is a rk1 local system with fiber at D = >, nix; being @03

o™ on Sym™ X and for n > 0 descends to Bung, ~along AJ,,.
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7 Towards Hecke Eigensheaves: 25/09/2025

Scribe: Youseong Lee

7.1 Recollection

Given a rank 1 local system o on X, we want a rank 1 “special” local system X, on Bung 6 such that
AJ* (x,) = o. Last time, we constructed a rank 1 local system on Sym”™ X

o™ = add,, (cX.. K J)S"
whose fiber on a divisor D = )", n;z; is a%”f. A little more formally, one can say:

Proposition 3 (Exercise). The canonical map o R ...X o — add:(c™) given by adjunction is an isomor-
phism. (Easy to check!)

Remark 14. When ranko > 1, there may be some extra complication.
Observation from the end of Lecture 5: for n > 2g — 2,
Sym” X 2% Bunf
Sym"™ X — Pic"

have fibers AN\0 and PV~ respectively, for N = n + 1 — g. It follows that o(™ is constant along these
fibers, so it descends to x{ € Lisse(Bung, ) for n > 2g — 2.
If you like:

1. One can think x7 as the non-derived pushforward of o™,

2. Given a smooth surjective map f: X — Y between smooth X,Y with geometrically connected fibers,
the pullback Lisse(Y)Y — Lisse(X)? is fully faithful with essential image as those local systems that
are constant along fibers.

3. The above generalizes to perverse sheaves as well.

7.2 Digression
Checking the following proposition:
Proposition 4. PV is simply connected over algebraically closed field k = k.

Here, being simply connected means 7{*(PY) ~ %, or, Lisse(PN)¥ ~ Vectg.
Proof. First, we prove for N = 1.
Claim 2. If f : Y — P! is finite étale map and Y is connected, then f is an isomorphism.
Proof. By Riemann-Hurwitz formula,

deg(f) - x(P') = x(Y)

holds. Now x(P!) = 2 and x(Y) = 2 — 2gy, so we have LHS > 2 and RHS < 2. Therefore we must have
equality on both sides LHS = RHS = 2, so that deg f = 1 and f is an isomorphism. O

The claim completes the proof for N = 1; it asserts that P! allows no further étale covering maps.
For general N, we need two inputs from SGA I:

1. Kiinneth formula for proper varieties:

Wft(Plx...x]P’l):*.
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2. For smooth Y and Z C Y of codimension > 2,

' (Y\Z) = ' (V).

As a corollary, we have:

Corollary 2. 7€t is a birational invariant for smooth proper varieties.

Since P¥ is birationally equivalent to (Pl)N, we have 7¢¢(PY) = x as desired. O

7.3 Multiplicative sheaves
Choose some Ly with deg Ly >> 0. For all n,

n _ . n+N-deg Ll ®R—N
Xo = Xo & O®XU|£U

Here, in the first equality, we used Ly to identify

n—+deg Lo
G

m

n—+N-deg Lo
G

m

Bungm = Bun & .. 5 Bun

We choose the minimal N such that n + N - deg Ly > 2g — 2.

We want to express this a little scientifically!

Let A be a commutative group scheme (which will be Jac(X) in the future,) and e is the coefficient field
for our sheaves.

Definition 10. A multiplicative sheaf on A is a local system x € Lisse(A) with data
1"y ~e
m”x ~ x Wx

where 1 : Speck = A, m: AxX A — A are the unit map and multiplication, respectively. These isomorphisms
should satisfy various “obvious” axioms:

1. they are compatible morphisms;
2. the second isomorphism is Z/2-equivariant;
3. they satisfy the cocycle condition on A3.

Remark 15. The isomorphism m*x ~ x X x is analogous to the property of characters, in the sense that on
the fiberwise level we have Xab =~ Xa @ Xp- (Note that the axioms force x to have rank 1.)

Example 12. Consider a finite covering of A given as:

0T A A0

with finite group I and a commutative group scheme g, together with a character T' — e*. (A good example
is (=)": Gy — Gy, with T ~Z/n.) Then we get

5 classifying cover
ét( Q) Llassilying cover o

m
which gives a rank 1 local system x on A; it will be multiplicative.
We want to establish the following correspondence:

{Multiplicative sheaves on Bung,, } — {Rank 1 local systems on X}
x = AJ(X).

Choose zy € X (k) for convenience to get

Bung,, ~ BG,, x Jac(X) x Z.
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Claim 3. There is isomorphism
{ Multiplicative sheaves on Bung, } ~ { Multiplicative sheaves on Jac X} x {Lines}
that maps a multiplicative sheaf x on Bung,, to
1. XJac, the multiplicative sheaf on Jac(X) given by restriction of x along Jac(X) — Bung,, ;
2. and the line (1-dimensional e-vector space) given by tanking fiber on O(xg).
Here, the point O(xg) € Bung,, ~ BG,, x Jac(X) X Z can be interpreted as (unit, unit,1). Also:

Multiplicative sheaves on| _ [ Rank 1 local system x on Jac(X)
Jac X - with isomorphism 0*(x) ~ e

Proof. Write A = Jac(X). The LHS is equivalent to a map 7{’(A) — e* such that the following diagram
commutes:

7t (A) —————— e
mT Tmult
7t (A) x T (A) —— e* x e*
and the RHS is equivalent to a map 75¢(A) — e*. Now the claim follows from the Kiinneth formula and
Eckmann-Hilton argument. O
7.4 Hecke eigensheaves

For each n > 0, define a, : Sym™ X x Bung, — Bung,, as a,(D,L) = Lp. These are compatible with

summation of divisors Sym™ X x Sym™ X — Sym™ %™ X i.e. the following diagram commutes:

Sym™ X x Sym™ X x Bung, —=+ Sym" X x Bung,,

1 b

m—+n Am+n
Sym X x Bung, ——  Bung,, .

Definition 11. Given a rank 1 local system o on X, a Hecke eigensheaf on Bung,, with eigenvalue o is a
sheaf F on Bung,, equipped with isomorphisms

2 F~c™WRF
for each n > 0, which satisfy obvious compatibility conditions:
1. For n =0, it gives the identity isomorphism;

2. For n,m > 0, the isomorphisms are compatible with maps Sym™ X x Sym™ X — Sym™ ™" X and
pullbacks o™ — o) K (M) in evident ways.

Example 13. For n = 1, the isomorphism induced by o F =~ oW ® F on the fiber over x € X and
L € Bung,, reads

Fle, ~ 0. @ F|r.

Note that this definition of Hecke eigensheaves makes sense for sheaves defined only on | |, , Bung = for
some IN: we can use

Sym™ X x Sym™ X — Bung ™

that maps (D1, D3) — O(Dy — D3). Following Hecke property, the restriction of F along this map is

Flox @ 0™ K (O'(m)>_1 .
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In this regard, we have the following:

Hecke eigensheaves for 0| [ Hecke eigensheaves for o
~ n .
on Bung,, on ||,y Bung

Essentially, we only need data on a single Bung, ~together with an identification with some other Bung' .

Definition 12. A normalized Hecke eigensheaf on Bung, —is one with extra data of an isomorphism Flo, ~
e.

Hence we are to establish the following correspondences:

Rank 1 local systems o
+ Normalized Hecke eigensheaves

on Bung

Rank 1 local systems
on X

Multiplicative sheaves ~
on Bung,,
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8 Back to F,: 30/09/2025

Scribe: Michael Horzepa

The theme of this lecture is trying to gain arithmetic information out of geometric information, and the
workhorse for this will be the Lang isogeny. We will first introduce some necessary construction before we
state and give a basic proof of Lang’s theorem, then we will move onto some applications.

8.1 Lang Isogeny

Begin with a group scheme H over F,. Then there exists a canonical finite subgroup H(F,) C H by taking
the F, points of H. Any algebraist would then naturally take the quotient of H by this subgroup, leading to
the question:

Question: What is H/H(F,)?

Answer: H if H is connected.

Counterexample: If H is discrete (say a finite group considered as a group scheme over F, ), then this
quotient can become trivial, or more generally create a distinct quotient group.

To see this, we begin with some constructions: the absolute and geometric Frobenius. For the former, let
us begin with S = Spec A for some finite F, algebra A. Then we can produce a natural Frobenius map on A
via

A— A fefe

This then produces a map

p:5—=>S8
By Functoriality this generalizes to any scheme over SpeclF,, and we call this map the “Absolute Frobe-
nius”.
Remark 16. If S is a scheme over Fy, then given s € S(B) for some algebra B/F, we see that ¢(s) will
give the image under the qth power map. Furthermore, using ¢ on B, we induce a map

S(B) — S(B)

Now we would like to introduce a variant of this Frobenius map, and to start we need Sy /Fq a scheme
with base change S/F,. Then we define the “Geometric Frobenius” via the morphsim of schemes over F,
given by:

(I>S = 5, X idﬂ:q : So XF, E—) So XF, E
Example 14. Let So = {y?> =23+ \} € A]%q and S ={y* =23+ 1} € A%q, where X € F,. Then

@S(xv y) = (xqv yq)
Both of these maps will be major players, and a motto to take forward is that the “absolute Frobenius is
great, geometric (Frobenils) is even better”. Now with these defined, we return back to dealing with Hy/F,
a group scheme with H/F, a base change.

Definition 13. The Lang Isogeny is either of the following two maps:

Ho 5 Hy  h hp(h)™!
HE5H  he hdy(h)

We notice that this is functorial, and hence is a group homomorphism. Furthermore, for any point
h € Hy(F,), we see that since points in F, are fixed by the Frobenius, this means ¢(h) = h and L£(h) = 1.
More generally, if we consider any element v € H, we see:

L(yh) =vh®u(h) " u (7)™ =72u(7)"" = L(7)
and hence £ is invariant on the cosets of Hy(F,). We can now come to our theorem:
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Theorem 9. (Lang’s Theorem) If Hy is connected, then L induces an isomorphism of left Hy space

Ho/Ho(Fq) = Ho

To prove this theorem, we quickly need to address the left action of Hy on itself. This action will be
called “Frobenius conjugation” and acts via:

hxy = hyp(h)™
With this in hand, the following lemma will for the most part immediately imply the theorem:
Lemma 2. FEvery orbit of this action is open

Proof. Let v € Hy, and build the map Hy — Hy via h — h *~. This gives an isomorphism of the tangent
spaces because ¢ has 0-derivative, which proves the lemma. O

Now to prove Lang’s theorem:

Proof. If Hy is connected, then the lemma implies that there is exactly 1 Hp-orbit of this action, or put
another way, that this action is transitive. Thus we have

Ho/ Stab(1) = Hy
The proof then finishes by realizing that Stab(1) is exactly Hy(IF,) O
Let us give a few brief examples:
Example 15. For the most trivial example, consider A}Fq or Aﬂl‘fq thought of us as G,, the Lang isogeny is
given by:
L:t—t—t9

Both are infinite in any sense of the word, and by quotienting by this finite discrete set, they remain
unchanged.

Remark 17. Given an algebra K/Fy and X € K, by setting K' = K[t]/(t—t?7—\), we induce an Artin-Scheier
cover through the Lang isogeny in the following way:

Spec K/ —— Al

Lk

Spec K — A!

Example 16. This is the most trivial example. Let us consider £ : Gy — Gm. This acts via t — t47 1,
This is an étale cover because ¢ — 1 is prime to p, and hence via the theory of deck transformations we get
associated Galois group

Ho1 =Fg = Gn(Fy)

8.2 Applications

Let us run through several applications of this theorem:
Example 17. A corollary of Lang’s theorem is the following:

Corollary 3. If Hy is connected, then any Hg-torsor over SpeclF, is trivial. Here we have Hy ~ P —
SpecF,. Then Plr, ~ H in a manner compatible with the action, which also is true if and only if P(Fy) # 0.
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Proof. We know Jp € P(F,) by assumption. Apply ®p(p) = h - p for some h € H(F,). Then by Lang there
exists v € H such that vy~ 1@z (y) = h. Taking then p"®¥ =~ - p, we get

Pu (") =2u(7) - ®u(p) (15)
= (VW) (hp) = yp = p" (16)
This then implies p"* € P(F,), so we are done (using the comment about the equivalent condition). O

Example 18. Now we return to a smooth geometrically connected curve Xo/F,. Then we Lang implies that
there exists a divisor D of degree 1 on Xo. To see this, let Hy = Pic® ~ P = Pict. This then implies the
existence of a line bundle of degree 1 trivialized on some U C X, which gives rise to our divisor.

Exercise 2. As an alternative proof, use the Weil bound to deduce this same conclusion.

Example 19. Lang provides a way to show that every finite dimensional division algebra D/F, is commu-
tative.

Proof. Without loss of generality, assume D is central over F, of rank n. Then the result follows by letting
Hy = PGL,, = Autajg(M,) and P = {D ~ M, }, where M,, is the matrix algebra. O

Example 20. Let G be a connected reductive group scheme over F,. Then we can construct the flag variety

Flg ={B C G Borel}

By the general theory G ~ Flg transitively via conjugation. Using Lang we can then deduce that we
actually have some B C G which is defined over F.

Example 21. For the last example, let p # 2. Then given a quadratic form q = {> ;_, a;z?|a; # 0,]]a; €
(IFQX)2}, then q is equivalent to Y y? up to a choice of coordinates.

Proof. This follows from the equivalence

Non-deg. rank n quad.
forms w/ disc. in k> /(k*)?

With the latter being trivial, the result follows. O

} + {S0,, — torsors}

From all this discussion, what we really need is for our group scheme Hy/F,, we get a canonical map (and
further a group homomorphism)

i (H) — H(F,)

which is encoded by the connected cover Hy £ Hy. One might recall this is a similar sort of induced
map that comes from regular topological fundamental groups and connected covers.

Remark 18. We can see Z/(n) ~ Fyn by t — t9. Then this implies Z/(n) ~ SpecFm» — SpecF, is a
nontrivial Z/(n)-torsor.
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9 GCFT via Frobenius: 02/10/2025

Scribe: Viadyslav Zveryk

9.1 Recap: Frobenius and Rational Points

Let Yy be a variety defined over a finite field F,. Let ¥ = Y5 Xspecr, Spec IF'q be its base change to the

algebraic closure. The geometric Frobenius is the morphism ® : Y — Y which is the base change of the

map om Yy which is identity on the topological space and the g-th power map on the structure sheaf. For an

affine variety Yy = SpecFy[x1, ..., x,]/(fi), the Frobenius acts on coordinates as ®(y1,...,yn) = (yf, ..., yL).
This setup leads to a fundamental dictionary:

Arithmetic geometry of Y FEN Geometry of Y over IF‘q
over I, together with the Frobenius ® |-

The set of F,-rational points of Yy, denoted Yy(F,), can be realized as the set of fixed points of the

Frobenius map on Y: B
YO(Fq) = Yi)(IFq)-

Geometrically, the fixed points are the intersection of the graph of the Frobenius Graph(®) with the diagonal
morphism A inside the product space Y x Y.

Y® —— Y

| |Grah@)

Y —2 .Y xY.

Note that Y'® is a finite scheme over ?q whose Fq—points are naturally identified with the F,-points of Yj.

Example 22. Let Yy = A]%-q. ThenY = A]%_ = SpecF,[x]. The fized points are given by the spectrum of the
ring:

(A%‘q)@ _ Spec (Fq[l‘] ®Fq FqM) v Spec ( IF‘q[y] )

(x—y,z7—y) Yyl —y

Since y? —y = Haqu (y — a), this corresponds to the disjoint union of points for each element of Fy:

IE7?(1
Spee 1} (y _[y(]l)

o H Spec(F,) = A'(F,)

a€lFy

Remark 19 (The case of stacks). This principle extends to algebraic stacks. Let Hy be an algebraic group
over [y, and let H = Hy xp, F,. Consider the classifying stack Yo = BHy = [x/Hy], whose base change is
Y = BH = [x/H]. The Fg-points of the stack, (BHy)(F,), correspond to isomorphism classes of Hy-torsors
over Spec(F,).

The fixed-point stack Y'® can be described in terms of ®-conjugacy classes on the group H. We have
Y® = BH Xpgxm BH = HA\\H x H/oH = H/oH,

where A is the diagonal action and the ®-action is given by g — hg®(h)~! for g,h € H(F,).
A key result discussed last time is that every orbit under this ®-conjugacy action is open. Therefore, if
H is a connected group, there is a unique ®-conjugacy class. In this case,

Y® = H/sH = [x/Ho(F,)] = B(Ho(F,))

because Hy(F,) is the stabilizer of the identity element under the ®-conjugacy action. More concretely, we
have a fiber product diagram:
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which makes £ an Hy(F,)-torsor.
This implies that there is a unique Hy-torsor over Spec(FF,) up to isomorphism. The group of automor-
phisms of this torsor is Ho(Fy).

9.2 Application to Geometric Class Field Theory

Let X be a smooth, geometrically connected projective curve over Fy, and let X = Xg xp, Fq. Geometric
class field theory studies the abelianization of the Weil group of Xy. The Weil group Wy, is a subgroup of
the arithmetic étale fundamental group 7$*(X,) that fits into the following short exact sequence:

1 — 7(X) — Wx, — Z — 0, (17)

where m$(X) is the geometric fundamental group of X and the Z is generated by the Frobenius automorphism.
The main goal of geometric class field theory is to provide a geometric description of the abelianization
of the Weil group, W%’) The fundamental isomorphism is:

W = Pic(Xo)

compatible with W%l(’) — Z and the degree map Pic(Xy) — Z.
If the curve Xy has an F,-rational point, say xo € Xo(F,), this provides additional structure. The
existence of zg gives a section Spec(F,) — X, which induces a map

Z= WSpec(]F‘q) - WXO

splitting the sequence (17)): )

WXO = Wit(X) X 7
Similarly, the Picard group decomposes. The degree map deg : Pic(Xy) — Z has a section given by g,
leading to a decomposition:

Pic(Xp) 2 Pic”(Xo) x Z = Jac(Xo)(F,) x Z.

9.3 Frobenius Action and the Reciprocity Map
9.3.1 Frobenius Action on the Fundamental Group

One question one could ask is how does Z act on the geometric fundamental group 7$*(X) in the semidirect
product decomposition of W, . It turns out that this action is given by a canonical action of the geometric
Frobenius ® on 7$*(X). An F,-rational point zg € Xo(F,) is fixed by ®. This gives a pointed morphism
d: (X, z0) = (X, x0), which in turn induces a group automorphism:

D, (X, 20) = THX, 20)
Proposition 5. Let F := ®,.
1. The map F is an isomorphism.

2. The action of F on w§{(X) coincides (up to a sign) with the conjugation action induced by the generator
of Z in the semidirect product decomposition Wx, = 7{{(X) x Z.

Abelianizing the sequence and taking coinvariants under the action of F' leads to the short exact
sequence:
1— (af'(X)*)p — W — Z — 0.

Remark 20. The group of coinvariants (7$*(X)?)r is finite. This follows from the Weil conjectures, which

imply that for the action of F on H;(X,Q;), the eigenvalue 1 does not occur. This ensures that the cokernel

of the map (F' — 1) on H;(X,Qy) is trivial, which implies the finiteness of the coinvariants on Hy(X,Z;) =
ét ab

T (X) Q7.
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9.3.2 Construction of the Reciprocity Map

We aim to construct the isomorphism W4 = Jac(Xo)(Fy) x Z. The map to Z is simply the canonical
projection from the Weil group. The non-trivial part is constructing the map to the Jacobian.

Wb — Jac(Xo)(F,)

This map arises from the Abel-Jacobi map AJ,, : X — Jac(X), which is functorial and induces a map
Wx, = Wjac on Weil groups.
The rational points of the Jacobian can be described using the Lang isogeny:
L: Jac(X) — Jac(X)
y— 2(y) —v.
The kernel of this isogeny is precisely the group of rational points, ker(L) = Jac(X)(F,) = Jac(Xo)(Fy),

q
and the Lang isogeny is an étale map. Therefore, it induces a map Wiae(x) — Jac(X)(F,). The overall
construction can be summarized by the following diagram:

Wg —— Wb
0

Jac

7.

(x) —— Jac(Xo)(F,)
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10 Lang Isogeny: 7/10/2025

Scribe: Minghan Sun

10.1 Universality of the Lang Isogeny

Theorem 10 (universality of Lang Isogeny). Suppose Ag, By are commutative connected algebraic groups
over Fy. Suppose we are given a short exact sequence

0T =By Ag— 0 (18)

where I' is a discrete finite group. Then there exists a unique factorization of the above short exact sequence,
i.e. a unique map o : Ag = By such that moa = Ly, .

Remark 21. In other words, theorem says that the universal finite (étale) cover of Ag by an algebraic
L
group such that the kernel of the cover is discrete is the cover Ay o, Ap.

Remark 22. In the statement of theorem[I0, by a “discrete” finite group T', we mean a finite group T' with
no extra algebraic geometry, i.e. a finite group I' which is isomorphic to a disjoint union of copies of SpecFy.

Example 23. Consider the map f : Gy, r, = Gy r, given by f(t) = tF for some k. When (k,q) =1, f is a
finite étale cover of Gy, .
We have a short exact sequence

1 g = G, 5 Gp, — 1. (19)

It is a fact that py is discrete in the sense of remark if and only if & ug(F,) = k, which happens if and
only if k =q—1. When k=q—1, ux equals F.

proof of theorem[I0} We have a diagram

0 r By —=— Ag 0
j H o (20)
0 — By(F,) "% By 0.

Here we have an inclusion I' < By(F,) because I is discrete. Denoted by « the induced map Ay — By. We
will show that moa = L4,.

By construction, it is clear that am = Lp,. So mam = 7Lp,. On the other hand, by functoriality, we have
La,m=mnLp,. Somanr = La,m. Since 7 is a surjective map, we have ma = L4,, as desired. O

Definition 14 (Galois cover). Suppose Ag, By are algebraic groups over Fy and p : By — Ag is a cover. We
say p is a Galois cover if p is finite and étale and the group of Decke transformations of p is acts simply
transitively on the fibers of p.

Corollary 4. Suppose Ay/F, is an abelian variety. Suppose we have a connected Galois cover p : Yy — Ay
with the group of Decke transformations equal to T'. Suppose yo € Yo such that p(yo) = 0. Then the cover p
comes from the Lang Isogeny via the map Ao(F,) — T

Proof. We need to show that Yy has a group structure which is compatible with the map p.
Let Y, A denote the base changes of Yy, Ag to Fy, respectively. We know that

{cover Y — A} < {a homomorphism p: 7{'(A) — T'}. (21)

Since we are working over F,, we have the Kunneth Formula. So the RHS of the correspondence above fits

into a diagram
add, T \ (22)

LA x A) —— 7 (A) x 7é(A) —— T x .
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Unwinding what the diagram means on the LHS of the above correspondence, we see that Y has a group
structure compatible with the map ¥ — A.

To finish the proof, we notice that we can define the desired group structure on Y (compatible with p)
by Galois descent. O

c
Remark 23. We already know that Ay Z20 Ay is a Galois cover of Ag with group of Decke transformations
equal to Ag(Fy). corollary says that this cover of Ag is the universal example of a Galois cover of Ay with
a finite discrete group of Decke transformations.

Suppose Zy/F, is geometrically connected and let Z = ZO|E' Recall from the previous lecture that we
have a short exact sequence R
1= m(Z) = 7" Z) — 7" (Fy) =Z — 0. (23)

If we choose a point zy € Zy(F,), then we get a section 7§t (F,) = 7 — 7(Zy). As a result, we have
7$(Z0) = 7 x 7$t(Z). (24)
This gives us an automorphism F of 7{(Z) and we let 7{!(Z)r denote its group of covariants.

Theorem 11. Notation as above. Then the data of a T'-cover p : Yo — Zy (T discrete and finite) plus the
data of a point yo € Yo(F,) with p(yo) = 20 is equivalent to the data of a homomorphism 7{'(Z)p — T .

Proof. We know that

A TI'-cover p: Yy — Z . ét
{plus a point yg € YO(E) lying over zg ¢ {a homomorphism 1" (%o, 20) — T} (25)

Since we know that m{*(Zy,z0) = 7 x 7€t (Z), these are also equivalent to the data of a homomorphism
Zx mH(Z) — T. o
If we require the point yo € Yy(F,) to be F,-rational, we get a correspondence

A I-cover p: Yy = Zj a homomorphism Z x w¢t(Z) — T
{plus a point yo € Yy(Fy) lying over zo} < { trivial on Z } ’ (26)
But we also know that
{a hOHlOInOI‘p}'liS.Hl z D(Aﬂ'ft(Z) - F} <+ {a homomorphism 7" (Z)p — T}, (27)
trivial on Z

finishing the proof. O

Corollary 5. Suppose Ag is an abelian variety over Fq. Then
mi' (A)r = Ao(Fy). (28)
Proof. Corollary of previous results. O

10.2 Application to CFT

Recall our setting from the last lecture. We let Xy be a smooth, projective, and geometrically connected
algebraic curve over Iy, and X = XO\E. We have a short exact sequence

1= 7(X) = Wx, - 7Z 0. (29)

Choosing some zg € X(F,), we get a splitting Z — W, of the above short exact sequence. As a result, we
can write

Wx, = Z x 7'(X), (30)

and so we get an automorphism F' of 7¢*(X).
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Abelianize the short exact sequence above and taking F-coinvariants, we get a short exact sequence
L= m(X)p > W -Z—0 (31)
along with a section Z — W;}E’) As a result, we have
Wi =Z x o' (X)3P. (32)
Also, from Geometric CFT, we have
' (X)* = 7! (Jac(X). (33)
Since Jac(X) is an abelian variety, by corollary [5, we have
7t (Jac(X))F = Jac(X)(F,). (34)
To summarize, we have shown that
Wx, =Z x Jac(X)(F,), (35)

which is what we wanted to show.
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11 Modular forms: 09/10/2025

Scribe: Zachary Carlini

11.1 Motivation from Modular Forms

For a more detailed treatment of modular forms, see [Ser73|, [DS05], etc...

“Every human being should read Serre’s A Course in Arithmetic” - Sam Raskin

The theory of modular forms is not strictly neccessary for us, but it will provide some helpful intuition
and motivation.

By a class vote, we will start with the more concrete definition of modular forms, so we will view them
as certain functions on the upper half plane H = {r € C: (1) > 0}.

Definition 15 (Holomorphic Modular Forms of Level 1, no Nebentypus). A modular form of weight k is a
holomorphic function f :H — C satisfying the following properties:

e (Modularity) For all (CCL b) in SLa(Z) and T € H,

d

F(E5) = s,

o (Growth Condition) For every X\ > 0, f is bounded on the region {7 € H : im(7) > A}.

Remark 24. If f is a modular form of weight k, we must have f(1) = f (511‘?) = (=1)*f(1), so for f to

be nonzero, k must be even.

OT+1
Z action determined by T — 7+ 1 isD° = {z € C: 0 < ||z|| < 1}, where the quotient map is realized by the

Remark 25. If f is any modular form, then f ( T+l ) = f(1), so f is periodic. The quotient of H by the

exponential map H ﬂ> D°. Therefore, any modular form factors through a function D° — C, which
by abuse of notation we will also denote by f. To distinguish these two functions, we will always denote the
coordinate on D° by q, whereas we will denote the coordinate on H by 7, so we will write: f(r) = f(q), where
it is understood that T € H and q¢ = €2™7 € D°.

The growth condition in the definition of modular forms implies that any modular form f(gq) extends to
a holomorphic function on D = {z € C: ||z]| < 1}, so we may write:

f(Q) = Z anq"”

n>0
for some coefficients a,, € C. This is called the Fourier expansion or the g-expansion of the modular form f.

Remark 26. If f is a modular form of weight k, then f (%) = 7R f(7). In terms of q-expansions, this means:

oo o0
: _ 2min
Tk § :ane27rzn7— — § :ane =
n=0 n=0

which is ugly and complicated looking. The takeaway is that modularity is not easy to check from the perspec-
tive of q-expansions.

Example 24 (Eisenstein Series). For k > 2,

1
Gan(r) = ) (mr + )2

(m,n)€Z>\0

18 a weight 2k modular form. This is called the Eisenstein series of weight 2k.
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Example 25 (Ramanujan A Function, a.k.a Ramnujan Discriminant Function).

Alg) = q[J(1 = q")** =n(r)**

is modular of weight 12. What does this function do? There is a simpler identity:

[T+ =" ang™,

n

where a,, is the number of ways to write n as a sum of distinct positive integers. If we change our generating
function to [, (1 + q™)**, then the coefficients in the expansion count the number of ways to write n as a
sum of positive integers, where we allow each positive integer to be repeated at most 24 times, and we weight
each expression by a combinatorial term that counts the number of ways we could have selected those copies
of the summands out of the 24 available. Finally, the coefficients in the expansion of our actual A(q), which
is given by ¢ [],,(1 - q™)**, count the (weighted) number of ways to write n — 1 as a sum of positive integers,
where we allow a summand to be repeated at most 24 times, and we attach a sign to the weights which depends
on the multiplicity of each summand.

We will denote by .#}, the set of holomorphic modular forms of weight k, and we will denote by .} the
set of cuspidal modular forms of weight k. A modular form f(q) = Y7 ang" is called cuspidal if ag = 0,
or, equivalently, if f(q) vanishes at ¢ = 0 (the cusp).

Here are some lovely, very special facts that are specific to the holomorphic level 1 case:

o Py My = C[G4,G6| as a graded ring, where G4 has degree 4 and G has degree 6.
e dim.%, = dim .#} — 1 whenever .#, is nonzero. In particular, dim.#;> = 1, so it is spanned by A.

The weight k£ encodes something about the Archimedean place, so when we go to function fields, it won’t
appear.
We will now introduce a nicer, more abstract definition of modular forms.

Definition 16 (Abstract). A modular form of weight 2k is an assignment of A C L — f(A, L) € L®* for
L a complex line and A C L a lattice such that f is holomorphic and bounded in a suitable sense (e.g. the
sense that makes this definition equivalent to the concrete one).

Dictionary: If f is an abstract modular form of weight k, then given 7 € H, we can plug L = C and
A = Z®7TZ into f to get a number, so this defines a function H — C which will be a concrete modular
form of weight k. Conversely, if f is a concrete modular form of weight k, then given A C L, choose a basis
A = spany(wy,ws) with wy/we € H (note that for any basis wq, wa, exactly one of w;/we and wy/w; is in H,
so we can choose a basis wy,ws arbitrarily and then swap them if we need to in order to get wi/we € H).
Then we can use wy as a basis for L, so there is a unique linear functional av,, ., : L®% — C characterized
by o ws (t.w?k) = tf(wi/we) for t € C. If we had chosen 71,7y instead of wy,ws as our basis, we could

similarly produced a linear functional oy, ,, : L¥~% — C characterized by oy, n, (t.n?k) =tf(ni/n2). There

is a unique matrix (CCL Z) € SLy(Z) with awy + bwy = 11 and cw; + bws = 12, and by the modularity of f,

F(2) =7 (B2 ) = (el fin) + )" e ) = (Z)k Flerfea).

m cwi + dwo

In particular, for t € C, we have:

k

k
Qg mo (tn§k> = tf(771/772) =t <ZZ> f(wl/w2) = (ZZ) Ay ,we (twgk) = Qyy,wo (tnéek) )

SO Qi ;e = Olyy w,- Lherefore, o, o, does not actually depend on the choice of wy,ws, so this procedure
gives us a canonical assignment A C L — A®% and this is an abstract modular form.
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Remark 27. A complex line with a lattice corresponds to an elliptic curve over C. Given A C L, we
associate the elliptic curve L/ with basepoint the projection of 0 € L. Conversely, given an elliptic curve E
with basepoint 0, we can take L = Ty E and we can take A to be the kernel of the exponential map from ToE
to E.

Here is a group theoretic perspective on the coincidence of the abstract and concrete definitions of mod-
ular forms: since SLy(R) acts transitively on H, and the stabilizer of a point is conjugate to SO2(R) (note that
SO2(R) = St € C*), we can write H = SLa(R)/ SO2(R). Then we have SLa(Z)\H 2 SLy(Z)\ SL2(R)/ SO2(R).

There is also a transitive action of GLo(R) on the space of lattices for a given complex line L, and
the stabilizer of a point under this action is conjugate to GL2(Z). The automorphism group of the line L
is C*, so a function on pairs A C L which is invariant under simultaneous isomorphism is a function on

GL(Z)\ GLy(R)/C*. But
GL2(Z)\ GLa(R)/ C* = SLy(Z)\ ({£1}\ GL2(R)/RZ,) / SO2(R) = SLy(Z)\ SLa(R)/ SO5(R),

which gives the equivalence of the two definitions of modular forms.
Recall that for 7 € H, we defined the Eisenstein series Gax(7) as the concrete modular form given by the
formula: )
Gox(T) = Z —_—r (36)

2k
(e \0 (m7+n)

I claim that under our dictionary, this corresponds to the abstract modular form given by:

Gu(ACl)= > N2 e o2k (37)
AEA\O

To check this, we need to plug Z &7 Z C C into our abstract modular form and compute:

Gou(Z @77 C C) = > A=y L

2k
Ae(Z @7 Z)\{0} (m,n)€Z2\0 (mT + n)

Note that equation immediately implies that Gog(7), viewed as a function on H, transforms correctly
under the SLy(Z) action, while equation immediately implies that Go(7) is holomorphic and satisfies
the growth condition.
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12 Hecke operators: 14/10/2025

Scribe: Joakim Fergeman

12.1 Hecke Theory

12.1.1

We have seen that modular forms can be regarded as functions
fr(A L) f(AL)e LTF,

where L is a complex vector space of dimension 1, and A C L is a lattice.
For each integer n > 1, we introduce the operator

T, : My, — Mg, (Tof)(A, L) =nF"" > f(N,L).
[A:A]=n

Here, the sum runs over all subgroups of A of index n (which are automatically lattices). We call T;, the n’th
Hecke operator.

12.1.2

By direct inspection, we see that:
1. Ty =id.
2. Ty, o T,, = Ty, whenever ged(n,m) = 1.
3. For any prime number p, we have

Tpn 0 Ty = Tpnsr + p" 1 Tpn-r.

Remark 28. The third identity is analogous to the following. Let V be a vector space of dimension two over
some field. Then:

(Sym"V) @ V = Sym™ ™'V @ Sym™ 'V @ A?V.
Remark 29. The Hecke operators preserve the subspace Sy of cusp forms.
A consequence of the above three identities is the following:
Corollary 6. The T,,’s commudte.

Remark 30. The T),’s are simultaneously diagonalizable. Indeed, by Corollary[6, it suffices to show that
each T,, is diagonalizable. This in turn follows from the fact that we have a Hermitian bilinear pairing called
the Petersson inner pmductﬁ

<-,-> :./\/l}C XSk—>(C
which is non-degenerate when restricted to Sy x Sk, and that T, is self-adjoint with respect to this pairing.

Definition 17. A Hecke eigenform is an eigenvector f € My, for the T,,’s. Note that it is sufficient to be an
eigenvector for T, for each prime p.

6We will not define this inner product here, but the reader should feel free to look it up.
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Example 26. Recall the Eisenstein series of even weight k > 4, written as a function on (A, L):

Gr(A,L)= Y x*reL ™k
0#AEA
We claim that Gy is a Hecke eigenform. We check this directly. Let p be a prime number. Then:
(T,GR)(A L) =p"" Y Ge(, L)=p"" 37 Y A
[A:A]=p [A:N]=p O#XeA

We distinguish two cases:

o If \ € pA, then X is contained in any subgroup A’ of A of index p, since pA C A'. In this case, there

are ezactly |P*(F,)| = p+ 1 subgroups of A/pA ~ (Z/pZ)? of index p.
o If X ¢ pA, then there is a unique A’ of index p containing X\. This is saying that there is a unique line

in A/pA ~ (Z/pZ)? containing the non-zero vector \.

As such the above double sum becomes:

P Z (p+1)AF + Z)\—k) = p-1( Z Ak Z AR

0#£NEPA A¢pA 0£NEPA 0#£NEA
PO PR DD AT = (14 PP - GR(A, ).
0#XEA 0#XEA

Example 27. From here, one can check that for alln > 1:

TGy = 0—1(n)Gy,
where o (n) = Y d*.
d|n

12.2 Relationship to Fourier Coefficients
12.2.1
For the standard lattice Z2, we write e; = (1,0),e2 = (0,1) € Z2.

Lemma 3. Let A C Z? be an index n subgroup. There exist unique integers (c,d) with d > 1,d|n,0 < c < d
such that

A = Spany(dey, ce; + geg).
Proof. Since ne; € A, choose d|n minimal such that de; € A. Next, consider an element ae; + Bex € A,
where z = «, € Z and $ > 1 is minimal. By adding multiples of de; to z, we may assume that ¢ := «
satisfies that 0 < ¢ < d.
We claim that 8 = %, which finishes the proof.

12.2.2

Recall that given 7 in the upper half plane H, we may associate the lattice Z® Z - 7 C C. Given d|n, and
0 < c < d, we get the sublattice Z - d ® Z(57 +¢) CZ@Z - 7 of index n.

Multiplication by d : C — C sends this lattice to Z ® Z - (57 + §). Now we can write what the Hecke
operators do to modular forms when we consider the latter as functions on the upper half plane. Namely, we
get the formula:

T f(r)=n*"1 f(%T + g)d‘k.

dn,0<c<d

35



12.2.3

Next, we turn to the question of what Hecke operators do to Fourier coefficients. Recall that a modular form

(of level 1) has a ¢ = e*™"-expansion:

fl@) =" an(f)a"
n>0
Note that:
Tof(r)=n*"13" 3 an(HEmmETIE

m2>0 d|n,0<c<d
N . o — ; <
_ nk 1 § : § :a/m(f) . e27rzmd27d k § : 627"“”d
m>0d|n 0<c<d
Note that the sum Y. €2™™17 equals zero unless d|m, in which case it equals d. Replacing m by dm, we

0<ce<d
get:

Tnf(T) _ nkfl Zadm(f)ze%rim%rdlfk

m>0 d|n
_ nkfl Z (Zdlfkadm(f))e%rim%ﬂ'
m>0 dn

Example 28. Note that:

ao(Tuf) = n* 1> "d" Fao(f) = ao(f) - o1 (n).

d|n

Example 29.
a(Tof)=n"" > d"Fagm(f)

m>0,d|n,mn=d

=" on=F 6, (f) = an(f).

In the theory of automorphic forms, this is known as the ‘Casselman-Shalika formula’.

12.2.4

n

Recall that Hecke operators preserve cusp forms. Suppose know that f = > a,(f)¢™ is a cuspidal Hecke

n>1
eigenform. Then

Tof =Mnf =D Anan(f)q"

n>1

for some A, € C. By Example 29] we have

an(f) = Anar(f).

This also implies that a1 (f) # 0. Without loss of generality, we can rescale f to assume that a1(f) =1 (in
which case we refer to f as a ‘normalized’ eigenform). In this case

an(f) = .

That is, the eigenvalue for T}, is the n’th Fourier coefficient.
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12.2.5
Let us apply this to the Ramanujan tau function. Recall that:

Alg)=q- [[A=a"* =D 7(n)g"

n>1 n>1

is the unique normalized cuspidal Hecke eigenform of weight 12. From the discussion in §12.2.4] and the
properties of Hecke operators listed in §12.1.2] we get:

1. 7(nm) = 7(n)7(m) whenever ged(n,m) = 1.

2. 7(p")7(p) = T(p" ) + plr(p"~!) for any prime p.
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13 What did Langlands Predict: 23/10/2025

Scribe: Michael Horzepa

Let us recall that what we have so far is the space of weight k& holomorphic (cuspidal) modular forms
M (2 Sk) as well as the Hecke operators T, which act on them. The T,,’s are simultaneously diagonalizable,
preserve the space of cusp forms, and each T,, € C[{T},}]|p prime- We now want to expand upon what the
Langlands program actually predicts for these types of functions.

13.1 What do the Langlands conjectures say?

When trying to answer as to what the Langlands conjectures actually say, the answer will by nature be a
bit mysterious. When Langlands first started thinking about the ideas, they were just that: ideas and a
philosophy. But, in the USSR one could not speak of philosophy, so when Drinfeld gave his PhD dissertation,
he used the word conjectures and it has stuck ever since. Because of that, we will give only a flavor of the
answer in this particular set up.

Taking the Langlands philosophy as a sort of “religious belief”, there is supposed to be a topological
group, and in fact a pro-Lie group, Lg of Weil group flavor. The regular Weil group of Q is in fact too small
which mandates the existence of the Langlands group of Q. In the function field case F' = Fy(X)), this group
takes on the role of Wg for the most part. Then there should be an isomorphism

Ly ~ Galg

Where the left hand side is the profinite completion. There should also exist a map |- | : Lg — R>? such
that for each prime p there should be a well defined up to conjugation Weil-Deligne map from Q,, to Lg such
that the following diagram commutes:

Wy, X something —— Lg

l n l\-\

n—
z —"F RO

There is also a map from the Weil group of W < Lq, but we haven’t discussed this. The key takeaway
is that this offers some extension of Galois theory which is not purely algebraic, but rather also incorporates
an analytic flavor. Of course, class field theory should say there exists an isomorphism:

LY ~ Aj/Q~
There is also an everywhere unramified version which looks like the following for each prime p:

LZ :_> Z:{FT;L}

I

Lo

This Lz will also contain Wg.

13.2 The Vague Picture

One should have the following vague picture in mind:

Z 1—Fr, Iy
|

SpecF, —— SpecZ ‘ ¥
J m1(SpecF,) —— m1(SpecZ)

SpecFy w} l

71 (SpecF1) = R>Y
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with the right side being induced by the left. Here F; denotes the field with one element. The principle
here is described by:

{motives/Q} —— rep’ns of Lg which look alg.

{Varieties/Q}

The idea is that every reasonable cohomology theory on varieties should factor through motives, and that
sufficiently nice “Galois” representations should come from motives. As an example, consider the following
which comes from the Tate motive Q(—1):

Q(~1) —— |- |H) : Lo - R>?

H?(Pg)

We could also have a different map such as | - |\/§, but this doesn’t come from a motive.
Note that the idea in some sense is:

. HE, (—,Q0) Qg-vector spaces W/ a
{motives/Q} { cts. action of Galg

If we stick with the QQ; coefficients then really this is generated by Galg, but if the coefficients are in C,
then we instead use just Lg. Then very roughtly Langlands predicts a correspondence:

{ automorphic forms } o { Lo — G(C) }

for G/Q representations

Here G denotes the Langlands dual group which comes from swapping roots and dual roots. In this picture
the hope is that cuspidal forms should correspond to irreducible representations.

13.3 Basic Expectations

We have not yet discussed what exactly automorphic forms are, but we claim the modular forms we have

seen are actually automorphic forms for G = GL(2) = §. What’s really happening is a correspondence:

pr - LQ — GLQ((C) }

an eigenform of wt k} <> _
{f g } { detpf:|~|k1

So in the case of modular forms, we first recall that for a normalized eigenform T,,f = A, f for A € C.
We expect that A\, = tr(ps(Fr,)). Let us consider this for the explicit eigenform examples of the Eisenstein
series Gor.. Then these correspond to the representation

1 0
PGay (g> = (0 |g|2k1>

Then if we take the trace at pg,, (p) = <(1) ngl), this exactly aligns with the eigenvalues for T}, we
calculated earlier.

Now imagine instead we started with a suitable irreducible 2-dimensional representation p of Lg (really this
should come from a motive IRIED. Then the belief is that there exists a unique cuspidal eigenform of weight k
that comes from this correspondence. Let’s try to reconstruct it via the q-expansion f = ag+a1¢+a2¢>+....

For starters, by assumption ag = 0 and a; = 1. The for next coefficient, we should have as = tr(p(Frs)),
and similarly for all other primes a, = tr(p(Frp)). We saw before that TpnT, = Tpn+1 + pF~1T,u—1 (like
(Sym" V) ®V = Sym" ™ V@ (Sym™ ' V)@ A%V for V 2 dimensional). Then this implies that for n > 1 that

7

in real life
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Gpn+1 = Qpn * Ap — pk_lapn_l

Finally if we recall that for (n,m) = 1 we get amn = aman, then we actually have generated our entire
g-expansion.

Of course, this is all well and good to get an infinite series, but at no point in this process did we show
that the function we generated was actually modular. This shines light on what Taylor, Wiles, etc. did.
They actually went in and checked that the function f generated in this fashion was modular for p coming
from an (at least a certain class of) elliptic curves.
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14 Functions to Sheaves: 28/10/2025

Scribe: Soumik Ghosh
Aim: Geometrization
Recall the analogy for F' a global field.

RDOZ+ ApDF

Modular forms are functions on SLoZ\H = SLyZ\SL:R/SOsR.
Let G be a reductive group (split/ defined over F). In char 0, this is the same as connected affine algebraic
groups with semi-simple representation theory. Examples are GL,,, SL,,, PGL,, Span, SOy, Spin,, G, Fy, Fg, Fr, Eg.
We look at adelic points G(A) and consider G(F)\G(A)/K where K C A = [[ F, is the subgroup
K =[] K, where K, C G(F,), for almost all v, K,, = G(O,), for finite v, K, C G(O,) is open subgroup and
for v Archiemdian, K, = maximal compact in G(F,).
Morally: An automorphic form for G is a function ”of level K”

G(F)\G(A)/K —» C

satisfying certain conditions (too complicated).
Fact: Modular forms of weight k <+ automorphic forms for PG Ly for F' = Q.
Let X¢/F, be a curve and F = F,(X). Set K =[] G(O,)
Say X/k is a smooth projective variety.

xe X closed

Definition 18. Bung(X) is the stack defined by
Hom(S, Bung (X)) = {G-bundles on X x S}

Examples

G = GL,, + € rank n vector bundle. G = SL,, <> £ rank n vector bundle and A"E = O G = PGL,, < &
rank n vector bundle upto tensoring by line bundles. G = O,, <+ £ rank n vector bundle with a non-degenerate
symmetric bi-linear form.

Example: X = Speck, then Bung(pt) = BG = pt/G.

When X is a curve, we shall discuss the geometry of Bung in some detail.

Fact: Bung is an algebraic stack locally of finite type and there exists S — Bung smooth and surjective
locally of finite type.

Theorem 12 (Weil for GL,, folk-lore for general split G). Xo/F, as before, Bung = Bung(Xy). Then we
have G(F)\G(A)/G(CO) = Bung(F,) canonically where 0 =] O,.

Example 30. G = G, then A* /0™ =D, x, ciosea. Z = {divisors on Xo} and hence we get
F>X\A*/O* = {line bundles L on Xy}

Given a G-bundle P on Xy, 3U # ¢ C X such that Pg|y is trivial.
Step 1: We claim

G(A) = {G-bundles P on X, with a trivialization on some non-empty open U C Xy, 7, and a

tivialization 7, on D, = Spec O,,z € X closed}

To go from LHS to RHS, cover Xy by U and [[ D, an fpgc cover and then g is the gluing data for a
G-bundle trivial over U and each D,.

Given an element of the RHS, we have Pg| po where DY = Spec F, with two trivializations T, and
Ty <= g € G(F,) where g,7, = 7,, and note that g, € G(O,) Vz € U.
Step 2 :

From now on:
An automorphic form (everywhere un-ramified) means a function

Bung)(F,) — C
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Note that the fields are different, so not quite regular functions. So we use Grothendieck-Deligne Sheaves-
Functions dictionary.

Let Y,/F, be a stack/scheme. So we have the geometric Frobenius ®y : Y — Y and Yy(F,) = Y'®.

Recall Shv(Y) — Q-sheaves and Shv®(Y) C Shv(Y) is the sub-category of bounded complexes with
constructible cohomology = finite dimensional fibers.

Definition 19. A Weil sheaf on'Y is a pair (F € Shv(Y),a : ®*F = F)

(F,a) is constructible ~ fr : Y(Fq) = Q. Soy € Y(F,) = Y? induces y*F = F, + Fo(y) = Fy and
this is a morphism in Vect . Taking the trace of this morphism gives fr(y) € Qi.
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15 Sheaves-Functions Dictionary: 30/10/2025

Scribe: Youseong Lee

15.1 Sheaves—functions dictionary (cont’d)

Last time: Given a constructible Weil sheaf (F, ) on Y, we constructed a function fr : Y(Fy) — Q, via
“trace of Frobenius.”
Intuition with manifolds:

e Y — SpecF, is a fibration from a 3-manifold M to S;

e the base-change YE = SpecIE‘iql XspecF,Y can be viewed as the fiber My over the basepoint 0 € o
which is a surface;

e a point y € Y (F,) is a section S' — M.

In this 3-manifold analogue, the data of y*F being a local system on S 1 is equivalent to a vector space V
(over Q,) with automorphism T, and then we can calculate the trace tr(7"). This is what we are doing in
sheaf-function construction.

Remark 31. A Weil Lisse sheaf (0,a) on'Y is equivalent to a representation of Wy (Weil group of Y).
Indeed, we have the following equivalent data:

Lisse sheaf o < p: m (YE) — GL,(Qy)
a: @0 ~ o < isomorphism p~po®
& g€ GL,(Q,) conjugating o and o o ®
& Zwm(Yy) = Wy — GL, (@)

where ® : m (Yg;) — m1(Yg,) is the geometric Frobenius.

Remark 32. If we replace Z by 7Z=m (SpecFy), we get sheaves on Yr,. Therefore, sheaves on Yy, induces
Weil sheaves on YE.

Example 31. From the constant 8h6af@7y overY (which is automatically a Weil sheaf,) we get the constant
function 1 over Y (Fy).

Example 32. Fori: Zy < Yy, the sheaf i*@_’zo gives the indicator function dz vy for Z(Fq) C Y (Fy).

Example 33. For Ag/Fq a connected algebraic group, let x : Ag(Fq) — @X be a character. Then we get a
rank 1 local system L, € Lisse(Ag) via the Lang isogeny:

. ya ——x
Wft(Ao,O) — Ao(Fq) — Qg .
Exercise 3. Fun exzercise: What is the corresponding function? x or x 1?2
Applying the above construction:

Example 34. For ¢, € @X a root of unity, we get a character

X:thﬁrFP—pH@@X

and the corresponding sheaf L, is the Artin-Schreier (AS) local system on Al

Example 35. From the character IE‘qX ~ Zg-1 Cq—fl> @X, we get the Kummer local system on G, .
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15.2 Grothendieck-Lefschetz trace formula
Big theorem:

Theorem 13 (Grothendieck-Lefschetz + ...). Let (F,a) be a constructible Weil sheaf. Then from «, the
Frobenius acts on the (compactly supported) cohomology

Frob ~ C;(Y, F) € Vectéﬁ

where Vect(CQT denotes the category of bounded complexes with finite dimensional cohomology (perfect com-

£
plexes.) Then, we have:

# = tr(Frob) = Y fx(y).

yeY (Fq)
Here we mean the supertrace for tr.

Remark 33 (Definition of compactly supported cohomology). For open embeddings j : U — Y, we can define
gr: Sho(U) — Sho(Y), the direct image with compact support, as the left adjoint to j* : Shv(Y) — Shv(U).
(Note: in this case, we have j' = j*.)

Then choosing a compactification j : Y <Y (which is an open embedding,) we can define

where C*(Y,—) = Hom(@y, —). Indeed, this is independent of the choice of the compactification.
Of course, when'Y is proper, there is no distinction betweeen C* and C}.

Example 36. Choosing F = @y, we have fr =1, so that
#Y (F,) = trace of Frob ~ C}(Y).
Example for P

Remark 34 (Warm-up). The map f : S — S given by z — 2" induces f. : H1(S') — H{(S') given by
n-(=):Z— Z. Here, Hi(S') ~ Z is given by a (noncanonical) choice of orientation on S*. Also, f induces
f* o HY(SY) — HY(SY), which is also n - (—=). (Surprisingly, transpose of 1 x 1 matrix is itself!)

Exercise 4. For k =k, the map Gm.k % G,k induces
n- (—) : Hl(Gm,Ze) — Hl(Gm7Zz)

where Hy (G, Zy) =~ Zy noncanonically (similar to Hy(S') ~ Z.) It is same for H'. (cf. Riemann—Hilbert
formula.)

Corollary 7. The Frobenius map G, 5 2, G, induces q- (=) on HY(G,,).

Exercise 5. There is canonical isomorphism H*(G,,) ~ H%(PY) (c¢f. Mayer-Vietoris,) and ®p1 acts as q-(—)
on H?(PY).

Example 37. We have

C*(P') = Qe & Q2]
O O
id q

where the endomorphisms are the Frobenius action, so we have

trace = 1+ q = #P'(F,).
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Example 38. Similarly,
C*P")=Q; ... Qy—2n]
id q
and we have
trace=1+q+ ...+ ¢" = #P"(Fy).
Some noncompact cases:
Example 39. We have
Ci(A") = Q[—2n]
O
q"
via open embedding A" — P". Of course, trace = ¢" = #A™(Fy).
Remember compactly supported cohomology of R"? (cf. Bott-Tu, Example 1.6(c))
Example 40. In similar ways,
CL(P") = Q[-1] ® Q[-2]

O O
id q

(For the degree 1 action, it comes from the point by excision. ) Now we are taking supertrace, so we should
be careful when dealing with the odd degrees:

trace = —1 4+ q = # G, (Fy).

Idea for proving Grothendieck-Lefschetz. For simplicity, assume that Y is proper, we have Frobenius
P:Y »Y,and Y(F,) =Y?.

Remark 35 (Lefschetz trace formula on usual cohomology). For compact (complex) manifold M, suppose
O : M — M has simple fized points. That is, the diagonal A C M x M meets the Graph(®) C M x M
transversally. Then the Lefschetz trace formula says that

M® =tr (& ~ H*(M)).
Also note that this formula fails for noncompact manifolds, for example, when M = R! and ® is nonzero
translation.

Grothendieck found there exists some analogous trace formula. Roughly, Frob gives a contraction ap-
proaching to the fixed point.
An immediate generalization to relative version:

Remark 36. for 0 :Y — Z over Fq and a constructible Weil sheaf (F,a) overY, O.F carries a Weil sheaf
structure on Z by base-change. Now we have:

for(x)= Y. fry
Yy e Y(Fq)
0(y) = 2

for each z € Z(Fy). It is really a pushforward of function via integration along fibers. (Note that we do not
worry about infinite sum because, for example, it is a sum over Fq-points.)

Exercise 6. Check Grothendieck-Lefschetz (without deep theory) in the following examples:
1. Y =AY, F=AS;
2. Y =Gy, F = Kummer;
3. Y =Gy, F =Kummer ® AS|g,,. (¢f. in Deligne SGA 4.5.)
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16 Better? Hecke Operators: 04/11/2025

Scribe: Max Steinberg
Question from Prof. Loseu on the previous lecture: there was something called Y on which the action
happened. What was Y7 Answer: Y is a scheme, not necessarily smooth, but quasicompact and finite type.

16.1 Where are we?

We said that, in some sense,

{unramified automorphic forms for G} = {local systems on X }

(Somehow the left-hand side is pairs (G, F') and the right-hand side is X D Spec F'). When F is F,(Xj):

{Q,-valued automorphic forms} = {Bung(F,) — Q,} <+ {Weil local systems on X}

Then: we expect “geometric origins” for functions like Y (F,) — Q. There should be some kind of “canonical
WEeil sheaf” on Y that has more geometric origins that gives rise to f via sheaf-functions correspondence.

Summary: VX/k with k = k, £ # char(k), for 0 a GL,-local system on X (or G) we should get a f-adic
sheaf on Bung F, € Shv(Bung) a canonical sheaf. It should be so canonical that if X/F, and o ~ ®*o
a Weil structure, then we get F, ~ Fgp-, that comes from the pullback along the geometric Frobenius on
Bung, i.e. a Weil structure on F,, which then gives us an automorphic form.

16.2 Hecke Symmetries

(Version 1)

Before: for every p prime, we had a corresponding operator T, (and T,») acting on the space of modular
forms Mj,.

Now: for every point x € X, we get a Hecke operator T : Shv(Bunpgr,) — Shv(Bunpgr,) (and ditto for
GLy and GL,,).

Definition 20 (standard Hecke stack). The standard Hecke stack at x is

Ha

5% &'=h

BunGLn BunGLn
Where Hy : {€,&" rank n vector bundles on X,& C & C E(x),dim(E'/E) = 1}.

Remark 37. For £ fized, £ C &' C E(x) is the same as subspaces of E(x)/E so all possible choices are a
union of the Grassmannian of £(x)/E.
Then the Hecke stack is the same as P(E(x)/E).
+—
In terms of the geometry: the map H, LN Bungy,, is a P"~!-bundle.
" o o !
Definition 21. T, : Shv(Bungr,) — Shv(Bungr,) s given by hi h*[n — 1] (= ho h [—(n — 1)]). (Other
conventions ezist.)

A very very proto-version of a Hecke eigensheaf:

Definition 22. If o is a rank-n local system on X, we could ask for F € Shv(Bungy, ) with a “canonical”
isomorphism T, (F) — F & 0, where o, is the fibre of o at x.

Can F be a local system? Exercise: prove F # 0 cannot be a local system for n > 1.
Better:
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Definition 23 (better standard Hecke stac. Hx has map h: Bungr, XX given by (€', ) and the fibres
over X give H,.

%* %!

Definition 24 (better Hecke operator). Tx : Shv(Bungr,,) — Shv(Bungr,, X X) is by b *[n—1] = h, h'[-n+7].

Definition 25 (better Hecke eigensheaf). Same but Tx(F) =F Ko.

Remark 38. A PGL,, bundle is a rank n vector bundle up to tensoring by line bundles. The standard Hecke
stack makes sense for these also.
Definition 26 (length-i standard Hecke stack). Instead of dimE&'/E =1, it is i instead.

Definition 27 (T%). Shifts are now [i(n — i)] = dim Gr(n, i) and [???]. That is Ti = i_ﬂ(ﬁ*[z(n —1)].

Definition 28 (better? Hecke eigensheaf). T (F) = FR A’ oV0 < i < n.

Remark 39. When G = GLy: Tx : Shv(Bung, ) — Shv(Bung,, xX) which is the pullback along X x
Bung,, — Bung,, which sends (x,L) — L(—x).

8This is the standard Hecke stack while the previous definition is the standard Hecke stack at x € X.
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17 Constant Term Functors and Whittaker Coefficients: 06/11/2025

Scribe: Minghan Sun
The goal of this and the next few lectures is to discuss “g-expansion” and Whittaker coefficients.

17.1 Constant term functions of modular forms

Recall 1. Suppose f is a (holomorphic) modular form. Recall that f has a g-expansion
f(q) =ao+a1q+asg® +--- . (38)
We have

w= [ 1) (39)

R/Z

an = / F(r)e=2mnT, (40)

R/Z

where R/Z denotes any horizontal line segment going from the left to the right of the fundamental domain of
the SLy(Z)-action on the upper half plane.

Remark 40. [t is often advantageous to consider the constant term of the q-expansion (i.e. ag) as different
from the other coefficients a,. For example, it is better to think of ag as a function out of R>° such that

aoly) = / 1), (41)

iy-+RZ

If f is a holomorphic modular form, then ag(y) is a constant function. However, if f is not holomorphic
(e.g. if [ is a Maass form), then ag(y) is not necessarily constant.

17.2 Constant term functors of automorphic forms
17.2.1 The rough idea

In the world of modular forms, the constant term function integrates over shifted copies of R/Z. We have
said many times that R/Z is analogous to F\A. As a result, it is reasonable that the constant term functor
associated to an automorphic form should integrate over “shifted copies of F\A” in some precise sense which
we will describe. Moreover, in the world of modular forms, the constant term functions integrates over G-
shifted copies of R/Z. So it is reasonable that the constant term functor of an automorphic form should
integrate over U-shifted copies of F\A (where U is the unipotent radical of some parabolic), since U (up to
“smudging”) is not that different from G,.

Let us illustrate the above discussion a little bit. Suppose we have (G,P,U, M) and suppose ¢ :
G(F)\G(A)/G(O) — C is an automorphic form. We want to produce a function that gives us values of
integrals of ¢ along U-shifted copies of F\A.

We have a diagram

G(F)\G(A)/G(0) & P(F)\G(A)/G(O) = M(F)U(A)\G(A)/G(O). (42)

We can immediately define the pullback function p*(¢) : P(F)\G(A)/G(O) — C. We can define an-
other function ¢ : M(F)U(A)\G(A)/G(O) — C by integrating p*(¢) along the fibers of ¢, i.e. for all
x € M(F)U(A)\G(A)/G(O), we have
0= [ ro. (43)
qa ' (x)

What do the fibers of ¢ look like? Well, each fiber is isomorphic to P(F)\M (F)U(A) = U(F)\U(A). So we
have indeed produced a function (¢) that gives us values of integrals of ¢ along U-shifted copies of F'\A.

48



17.2.2 The precise definition

Now we aim to geometrize the discussion in section [17.2.1] to obtain the precise definition of the constant
term functor of an automorphic form.
We have to use the following theorem:

Theorem 14 (Iwasawa Decomposition). Suppose G is a reductive algebraic group and K is a nonarchimedean
local field with ring of integers Ok . Then

G(K) = G(Ok) - B(K). (44)

As a result, if FF'=TF,(Xy) is a function field, then we have

G(A) = B(A) - G(0). (45)
Proposition 6. We have
P(F)\G(A)/G(O) = P(F)\P(A)/P(O) (46)
M(F)U(A\G(A)/G(O) = M(F)\M(A)/M(O) (47)
Proof. By theorem [T4], we have
P(F)\G(A)/G(0) = P(F)\P(A)G(0)/G(0). (48)

It is clear that the RHS equals P(F)\P(A)/P(O), as desired. The second equality in the proposition is
proven similarly. O

Recall 2. Recall that if H is a reductive algebraic group, then
H(F)\H(A)/H(O) <— {points of Buny}. (49)
As a result, it makes sense to define the following.

Definition 29 (constant term functor). Suppose G is an algebraic group, P is a parabolic subgroup, and M
the associated Levi subgroup. We have a diagram

Bung < Bunp % Buny, . (50)

We define the constant term functor of G with respect to P, denoted (CTp),, as the functor qp* (note that
(CTp)y is a functor from Shv(Bung) to Shv(Bunyy)).

Definition 30 (cuspidal sheaves). Setting as in definition . Suppose F € Shv(Bung). Then we say F is
cuspidal if for all parabolics P C G, we have (CTp)(F) = 0.
17.3 Whittaker coefficients (function-theoretic)

17.3.1 Character for A/F

Construction 1 (character of A/F). We will construct a character ¢ : AJ/F — C* which is not quite
canonical.

Choose a 1-form w on U C Xy, i.e. choose a 1-form w with no zeros or poles on U.

For all closed points x € Xy, let F,, denote the Laurent series at x. We have a map F, — C* given by

f — exp(tr(Res(f - w)2mi)). (51)
Collecting, we get a map A — C*. This map is zero on F C A by the sum of residues formula.
Remark 41. The character A/F Yy CX we Just constructed is analogous to the character R/Z — C* given

by T — e2miT
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17.3.2 Whittaker coefficients for G L,
Now suppose G = GLg with N ~ G, and f : G(F)\G(A) — C is an automorphic function. To construct the
Whittaker coefficients of f, we play a similar game as section Our diagram is now

G(ENG(A) <= N(F)\G(A) = (N(A), »)\G(A), (52)

where v is the character constructed in construction [II Note that the rightmost space is not really defined
because we don’t have a notion of a quotient with a character. However, the functions on this ’space’ are
well-defined: they are functions on G(A) that are v-eigenvalues of the N(A) action.

To spell out the above more concretely, to calculate the Whittaker coefficients of f, we simply calculate
the values of the integrals

/ f(ng)u(n)~Ldn (53)

N(A)

for all g € G(A).

17.3.3 Whittaker coefficients for general ¢

For a general reductive group G, we have maps

N— [ G.=%G.. (54)

simple roots

This is called a “Whittaker” or “nondegenerate” character. We can play the same game as in the GLo
case.
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18 Geometrization of Whittaker Coefficients: 11/11/2025

Scribe: Viadyslav Zveryk

From Whittaker Coefficients to Geometrization

In this lecture, we connect the classical theory of Fourier-Whittaker coefficients of automorphic forms with
its geometric analogue. Recall that last time we chose a rational 1-form w on X which defined a map

¥

N(A) —— A —— C~

that led to the picture
G(F)\G(A)/G(O) < N(F)\G(A)/G(O) = (N(A),v)\G(A)/G(O).

The Whittaker coefficient of f was defined by:
Wi(g) = /N(F)\N(A)f(ng)w(n)’ldn, g € N(A\G(A)/G(O).

1. Classical Setting (Function Fields)
Notation

e A is the weight lattice, A is the coweight lattice.
e At are dominant weights, AT are dominant coweights.

e A are roots, A are coroots.

We have
T(A)/T(0) = Divg(X),
where Divj (X) is the group of A-valued divisors on X i.e., finite formal sums D = > A, -z with A, € A.

zeX
By the Iwasawa decomposition, we have an isomorphism

N(A\G(A)/G(0) ~T(A)/T(0),
which leads to

Proposition 7. Every (N(A),G(O))-double coset can be represented by a unique A-valued divisor.

For a divisor D = Y A, -z € Divy(X), we denote the corresponding element in T'(A) by tP. Concretely,
zeX
it is defined as

tP = (Xi(tw))xeXy

where t, is a chosen uniformizing parameter at x € X. Clearly, this construction depends on the choice of
the uniformizing parameters, but this dependence is fixed after quotiening by 7'(O).

The construction says that the non-zero Whittaker coefficients are indexed by D. In fact, many of the
Whittaker coefficients are zero:

Proposition 8. Let I(g) := [ f(n'g)y(n')dn’. If there exists n € N(A) such that ¢(n) # 1 and t—PntP €
N(a)
G(0), then I(tP) = 0.
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Proof. Assume f is right G(O)-invariant. Let n € N(A) satisfy the conditions.

167 = [ sty
N(A)
= / f(n'ntP)yp(n'n)dn’ (change of variable n' — n'n)

N(A)
v [ fl Pt il
N(A)
=) [ S0P Pt
N(A)
— ¥(n) / FOPR)S () dn’ (where k = t~PntD € G(O))
N(A)
=1(n) / f('tPYp(n/Ydn'  (by G(O)-invariance)
N(A)
= ¢(n)I(t")
Since 9(n) # 1, we must have I(tP) = 0. O

Summary: The Whittaker coefficients W;(tP) are non-zero only when D satisfies a positivity condition.
These ”Whittaker cells” are indexed by A*-valued divisors (dominant coweight-valued divisors).

e Example (G = PGLy): At = Z>o@;. The coefficients are indexed by effective divisors D = > n, - =
with n, > 0.

e Example (X = SpecZ): Divisors Y n,[p] correspond to integers [[p™. The coefficients Wy (t?)

correspond to the classical Fourier coefficients a, (f) where n + D.

2. Geometrization

We now replace classical objects with their geometric counterparts (stacks, sheaves). Let G = PGLy and Q
be the canonical bundle on X. We introduce a twist.
We have N = G, and

N(F)\N(A)/N(O) =Buny ~ {0 - Ox —» & - Ox — 0}.
We consider the stack Bun% of extensions:
Bunf := {0 - Q = £ - Ox — 0}

This stack is
Bun'y = RI'(X,Q)[1] ~ H'(X,Q) x BH(X,Q),

because its points are parametrized by Ext'(Ox,Q) = H'(X,Q), and their automorphisms are H°(X, Q).
By Serre duality, H'(X,Q) = H°(X,Ox)* = A'. This gives a map ¢ : Bun% — H'(X,Q) = A'. The
picture is

N(F)\N%(A)/N}O) —— F, —— Al
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Let py : Bun% — Bung be the forgetful map sending the extension £ to the G-bundle £. (Note that
deg & = Q, so the image of this map will lie in the corresponding connected component of Bung).
The basic Fourier coefficient is the functor:

coeff) : Shv(Bung) — Vect
F = R (Bunf, ply F @ 1* AS).

This is an analogue of a1 (f).

Generalization (Higher Coefficients)

To geometrize the coefficients a,,(f) (or W;(tP)) for an effective divisor D, we define a modified stack. Let
Bun% be the stack of extensions:

Bunfy P = {0 = Q(-D) = & - Ox — 0}

This corresponds to Ext'(Ox,Q(—D)) = HY(X,Q(—D)).
We have a map pn,p : Bunﬁ — Bung sending the extension to £. We also have a map

Yp : Bunk — HY(X,Q(-D)) - HY(X,Q) ~ Al
The generalized coefficient functor (analogue of a,,) is:

coeffp i : Shv(Bung) — Vect
F = RIc(Buny, py pF @ ¥} AS).
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19 Hecke Eigenforms: 13/11/2025

Scribe: Zachary Carlini

Geometerization of Cuspidal Hecke Eigenforms

19.1 The function-theoretic story
For f € Fun (Bung(F,)) and D a divisor on X, we define:

o= [y O

so the functional Cp is a decategoriﬁcation of coeffp). This is our automorphic analog of the Fourier
coefficient functional a,(f) = [; f(7)e *™"7dr. The Langlands philosophy predicts that given a (nice)

representation o : Wx — SL2(Q;), there should be a corresponding automorphic form f, € Fun (Bung(F,))
such that:

e f, is cuspidal. This means that for every line bundle .Z on Bung,, (Fy),

> fs(&) =0.

{0>ZL—E—0x—0} /=
e The coefficients Cp(f) can be calculated as follows.

— Co(f) =1 (f is "normalized”).

= Cp(f) = tr (O’(Fz) m@lz), where F, € Wy is the image of the Frobenius map under the
homomorphism Wy, — Wx induced by the inclusion {z} — X.

— Forz e X and n > 1, Cp ) (f) - Cla)(f) = Clns1)2) () + Cln—1)[) (f)-
— If Dy and D are disjoint divisors, then Cp,+p,(f) = Cp, (f)Cp, (f).

Equivalently, for a divisor D = ) n.[z], the coefficient Cp(f) can be calculated as:

Co(f)= [ & (U(Fm) A Sym™= (@2)) .

zeX

Exercise 7. Given o : Wx — SLs (@l), there exists exactly one function ?; on Bung(F,) (which surjects
onto Bung(Fy)) with the correct Whittaker coefficients. Since f, is supposed to be defined on Bung, it is
overdetermined.

Next, we categorify.

19.2 The sheaf-theoretic story

Given an irreducible rank-2 local system o on X together with a trivialization Ao & @, we should be able
to produce a Hecke eigensheaf %, on Bung such that:

e %, is cuspidal. This means that CT\(.#) = 0.
e For a divisor D =)y n.[z], we have coeffp i(F5) = @, x Sym"*(0,), at least up to a shift.

However, unlike functions, sheaves are not completely determined by their fibers at points. Therefore, we
should ask for a stronger, global statement rather than just imposing conditions on coeff p; for each divisor
individually.
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Fix d > 0. The set of all divisors D of degree d has a natural geometry — it can be identified with the
points of Symd(X ). We can define a functor coeffy such that for every point D € Symd(X ) with inclusion
map tp : {D} — Sym?(X), the following diagram commutes:

Shv(Bung)

coeff
COEHd’!l D,

Shv (Symd X) — s Shu({D})
D
The natural way to do this is as follows. We have a diagram:

{DGSyde,O%Q(—D) — & = Ox %0}

Bung Al Sym? X
where for p = (D,0 - Q(—D) - & - Ox — 0), m1(p) = &, ma(p) = ¢ (0 = Q(-D) > & — Ox € Bun%(_D)),
and 73(p) = D. If AS € Shv(A') is the Artin-Shreier sheaf, we define:
coeff 4 1(F) = 73 (7] (F) @ w5 (AS)) .
We can now ask for a stronger condition on .%,. Namely, for every d, we require:
coeff 4 1(Fo) = ol

(Recall that o(?) is defined as add, (c®%)%, where add : X¢ — Sym® X is the map that sends (z,...,zq) to
the divisor [z1] + -+ + [z4])

19.3 Other groups

So far, we have been working with G = PGLs, but what about other algebraic groups? We saw that in this
case, the Whittaker coefficients should be indexed by AT -valued divisors. Given a representation o : Wx —
G (Q;), we should be able to attach a function f, which, for every A*-valued divisor D = Y

satisfies: )
Co(f)= [ & (U(Fm) A VA (@l)) .

zeX

zeX )\:c [xL

Coming Up...
In the following lectures, our goal will be able to make stuff feel more concrete. We will talk about:
e The geometry of cuspidality
e Why the coeff(.#) values determine % uniquely
e Hecke operators
e The geometry of Bung (especially when G = GLg, PGL2, or maybe SLo)

Here is a starting point. There is a surjective map Bungr, — Z which sends a vector bundle & on X
to its degree. It turns out this map induces an isomorphism mo(Bungr,) — Z. If x € X and & is a vector
bundle on X, the degrees of & and &(z) differ by rank&. In particular, the parity of a degree-2 vector
bundle on X is invariant under tensoring with a line bundle. Since Bunpgr,, = Bungr, / BunG,,, we obtain
Wo(BuanLQ) = Z/Q 7.
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20 Semistability: 18/11/2025

Scribe: Joakim Faergeman

20.1 Definitions

For a vector bundle &, write

We refer to p(€) as the slope of £.
Definition 31. We say £ is semistable if for all subbundles &y, we have
(o) < wE).

Example 41. If deg(€) = 0, then & is semistable if and only if any subbundle & satisfies that deg(&y) < 0.
Example 42. Let L be a line bundle. Then € := L ® LY is semistable if and only if deg(L) = 0.
Remark 42. Observe that for a vector bundle £ and a line bundle L, we have

(€ ® L) = p(€) + pu(L).
It follows that if £ is semistable, then so is € R L.

Remark 43. A vector bundle £ on a smooth projective curve X has many subbundles in the following sense.
Let nx = Spec(k(X)) be the generic point of X. Since & is Zariski-locally trivial, the k(X)-vector space

V.= F(nx,g)

has dimension rank(E). Let W C V be a subspace of dimension m. Consider the Grassmannian associated

to E:

g Gr(€) = X

parametrizing subbundles of € of rank m. The subspace W defines a map [ : nx — Grp,(E). The map 7 is
proper, and so by the valuative criterion for properness, the map f extends to a map
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X = Grp,(8).
That is, we obtain a subbundle of € of rank m.

Example 43. Suppose € is a rank 2 vector bundle that is not semistable. This implies that there ezists a
subbundle L — & such that deg(L) > 0. It is a simple exercise to see that in this case, L is the unique line
subbundle with this property. The induced filtration

0=>L—>E=E/L—O

is referred to as the Harder-Narasimhan stratification of £.

Let us make this last example more geometric. Let us take our structure group to be G = PGLs, so that
the standard Borel subgroup B of G can be identified with invertible upper triangular matrices whose lower
right entry is 1. For d € Z, consider the stack

Bung = {0 = L = £ = Ox — 0, deg(L) = d}

parametrizing rank 2 vector bundles £ equipped with a filtration as above for some line subbundle £ of degree
d. Note that we have a natural map

BunC]l3 — Bung

forgetting the filtration and remembering only the vector bundle £. We state the following proposition whose
proof we will see later in the notes:

Proposition 9. 1. The map Bun% — Bung is a locally closed embedding for d > 0.
2. Bun‘é — Bung is smooth for d << 0 with the dimension of the fibers going to infinity as d — —oo.

3. The stack Bung parametrizing semistable G-bundles is a quasi-compact open substack of Bung.

20.2 Deformation Theory

Suppose Y is a smooth variety and y € Y. We have an associated tangent space Ty, of dimension dim Y.

20.2.1

If Y is a smooth stack, and y : Spec(k) — Y, we can associate a corresponding tangent complex Ty , which is
a complex of k-vector spaces living in cohomological degrees [—1,0]. Moreover, Ty, , has Euler characteristic
equal to dim ).

Slightly better, we may consider the quasi-coherent sheaf Ty on ) whose fiber at y is Ty .

Example 44. Suppose H is a linear algebraic group, and let Y = BH be the corresponding classifying stack.
Then

Tpy = h[1] € QCoh(BH) ~ Rep(H).
Here, by is the Lie algebra of H considered as a representation of H via the adjoint action.

Example 45. Let X, Z be smooth stacks, and let Y = Maps(X, Z) be the space whose T-points, for some
affine test scheme T, is the groupoid Maps(X x T, Z). We have an evaluation map

ev:Yx X —>Z
and a projection map p: Y x X — Y. Then we have:

Ty ~p.oev*(Tz) € QCoh(Y).

Here, both the pullback and the pushforward is considered in the derived sense.
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Combining the above two examples, we obtain the following corollary for Buny = Maps(X, BH):

Corollary 8. For Py € Buny, we have:

TBunH,'PH =~ RF(Xa hPH)[l]

H
Here, hp, = Pu x b is the vector bundle of rank dim H obtained by twisting the bundle Py by the adjoint
representation.

20.2.2

In particular, if X is a smooth projective curve, we see that the tangent complex of Buny live in cohomological
degrees [—1,0], which implies that Bung is smooth.
For a vector bundle &, we write h*(€) := dim H*(X, ). By smoothness of Buny, we have:

dimp,, Bung = ' (hp,) = h°(hp,) = —x(hpy)-

If H = G is reductive, then g ~ g* as G-representations. In particular, deg(gp,) = 0. By Riemann-Roch, we
obtain:

dim Bung = —x(gp.) = —deg(gp,) + rank(gp;)(g —1) = (g — 1) - dim G.

20.2.3
As another example, let B be the standard Borel subgroup of G = PGL,. For a B-bundle

Pe=0—>L—=>E—=0x =0,

we have bp, = €&. So:

dim Bun% = —deg(bp,) +2(g—1) =2(g — 1) — d.
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21 Harder-Narasimhan Filtrations: 20/11/2025

Scribe: David Fang
Last time, we started looking at the HN stratification of Bung, G = PGLs. In particular, we said that
the map

Bung ={0 = L —=E&—=0—0]|degL = d} 2% Bung

is smooth for d < 0.
In general, if f : Y — Z is a map of smooth stacks, it is smooth at y € ) iff on tagnent complexes the
map H°(Ty ) — H(Tz j(,)) is surjective.

Example 46. The map BG — pt is smooth.

For us, we had:

HO (TBunB,PB) —— HO (TBUHG,PG)

Hl(X7 b'PB) E— HI(X,ng) — Hl(Xv (9/b)PB) —0

where the bottom row is exact. But

o= (5 5) = (0 2)samea = 0= (2 5)

B acts on g/b by G,, inverse to the standard character. Recall that H*(£") is dual to H°(£L® Q') the latter
of which is 0 if deg £ ® Q! < 0. In particular, we see that pg is smooth if d < —(2g — 2).

Remark 44. ANy vector bundle of rank > 1 admits a line sub-bundle of degree < —N for every N. Idea:
take an open U such that |y ~ (’)gr. By wha t we said last time, a line subbundle of £ is the same as a

point £ € P"~1(k(X)), which is the same as a map X Lo Pt Then we can take embeddings of arbitrarily
low degree, and deg L ~ — deg f + const.

In particular we have a smooth cover

H Bun‘é — Bung
d<—(29—2)

Since BunflB is an Artin stack (e.g. by checking that Bung, , Bung, are), then Bung is as well. To get more
information, we’ll use the “Drinfeld compactification.” The classical references are:

e Braverman-Gaitsgory: Geometric Fisenstein Series. . .
e Simon Schieder: The Harder Narasimhan Stratification. . ..

Definition 32. Define compactification

Bung := {(€ rank 2 v.b. ,0 # 7 € Hom(&,Ox))}

Ezxplicitly: an S-point of Bung is a rank 2 vector bundle £ on X x S, and a map of sheaves £ LiN Oxxs,
such that Vs € S, 7| x (s} # 0.

There is a map

2
Bunp — Buny = Bung,,, (5,7r)»—>det5:/\5.
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We let Bung = {(£,7) | deg € = d}. We have maps:

d
Bunp
T surj .\[OPCH
Pa qda
—d
Bung
Pa qq
Bung Bung

Proposition 10. p, is proper.

. . g =d
We won’t prove this; more or less this comes from the properness of Quot schemes. Let £ — O € Bunpg
be a field-valued point. We can factor this as

E—-0O(-D)—= 0O
for some divisor D > 0, so we get short exact sequences
0> L=kern =& — O(-D) — 0, 0— L(D)—&(D)— O —=0.
Since we work over PGLy, we know
Pa((€,7)) = Pas+deg 0(0 = L(D) = E(D) = Ox — 0)

Observe the following: for d < 0, consider the maps

d —d
Bunp < Bung

Pa _
\ J{Pd
d mod 2
Bung

Since pg is smooth, we know the image of pg contains an open; on the other hand, pg is proper, so p, is
surjective in this case. This also makes it easy to see that [~ 5 BunC]lg — Bung surjects for all N > 0.

Definition 33. Define Buny“"" to be the complement of the images of [T~ cven Bun$ — Bun&"; this

is also the complement to the image of Bun2B — Bung’®", so this is open.

The same logic as before shows that if we take U; to be the G-bundles which are semistable or admit
filtration {£ — & — O} for deg L < d, then Uy is also open. We also see that if Pg € Bung is semistable,
then there is a universal constant N depending on ¢ such that

V—->L>E >0 -0 Pq, —N <degL <0.

This is because there is a universal NV so that —deg N < deg L. On the other hand since £ is semistable,
deg L < 0. The same thing works for Uy, using —N < degL < d. This is enough to show that Uy is
quasi-compact, since it can be covered by finitely many BunC]lg.

Remark 45. We can show for d > 0 that
Bun’fg Uy \ Ug—2,

where the latter is given the reduced substack structure. This implies that Bun’lig — Bung is locally closed for
d> 0.

General picture: Bung®" has an open quasicompact stratum of dimension 3g — 3, and then smaller strata

BundB for d > 0 even, which has dimension 2g — 2 — d. For g > 0 the above shows automatically that
BunOGdd’SS # 0 (since Bung has dimension 3g — 3 and is nonempty).

Remark 46. Stacky phenomenon: there are infinitely many strata, whose dimension tends to —oo.
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22 Fourier Inversion: 02/12/2025

Scribe: Soumik Ghosh As before we have G = PGLs. For n >> 0, in fact for n > 2g — 2, we have the map

n Pn n
Bunp — BunGm

If [0 - L — & — O — 0] € Bunjg, then the short exact sequence splits non-canonically and the ’ambiguity’
is given by I'(L).

We have a universal vector bundle &, — Bung,, with fiber I'(£) at £. Bunpp = Bpunp &n.

Formally, X x Bung  carries a universal line bundle and &, is its pushforward to Bung, .

Remark 47. For a general n, the fiber is the complex RT'(L)[1].

We have
Pny 2 Shv(Bunjp) — Shv(Bung, )

is an equivalence Vn >> 0.
Application: F € Shv(Bung) is cuspidal. (CT*(F) =0 ¥n). Suppose n >> 0. Then we have

CT"(F) = quip, F = 0.

But g5, is an equivalence so p; F = 0.

So F is cuspidal = s-restriction of F to Bun's, a HN stratum vanishes for n > 2g — 2.

Picture: F vanishes around oo <= j,j:F = F where j, : U, — Bung is the inclusion of the union
of strata < n.

For functions, we have f : Bung(F,) — C is cuspidal = Supp f C U, (F,) and U, is quasi-compact
= U,(F,) is finite = cuspidal automorphic functions are finite dimensional.

Let CT" := q,,p,. Then Drinfield-Gaitsgory showed : Vn we have

inv* oCT}' ~ CT[ "

where inv : Bung ~— Bung"” is the morphism £ — L1

Application: F vanishes around oo iff F = Jnide F = jn.jiF. (clean extension property)

22.1 Fourier Inversion

We have coeffy, : Shv(Bung) — Shv(Sym"™ X).

Goal: For F cuspidal, the knowledge of coeffy, is equivalent to that of p* ; _(F). So if F is cuspidal, we
can recover F|g,, ., from {coeffq,}.

We prove this using Fourier-Deligne equivalence.

Setup: V is a finite dimensional vector space over a field k. We define a functor

Shv(V) — Shv(V")
F=FY

Consider
VxvY

/ J{ev%
pri
14 Al Vv

Then FY = pry, (priF @ ev*AS).
Facts:

e Shv(V) = Shv(VV)

e Upto shifts, we coincides with ()' (), variant.
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e This story works for vector bundles/schemes.

Consider

{(Liwer(L)Y =T(LY 0 QY[1])} = EY E,={(L,se~(L }DEO*{(E,S):S#O}:Sym”X

\

BunG
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23 More Fourier Inversion: 04/12/2025

Scribe: Youseong Lee

23.1 Fourier inversion (cont.)

Last time: Started “Fourier inversion” for G = PGLs.
The basic diagram where we do Fourier transform is:

Bun;" "% —— EY E,
lpn \ / Ul
Bung Bung Sym"™ X

where n denote the degree and
E,={(L,seT (L))}
EY={0—Q—&— L — 0, Line bundle + Extension}
={0-0®L!'=E&—-0-0}
= Bun};"”g_2
and Sym™ X C FE,, is open, complement to the zero section.

Remark 48. There is no similar complement construction to the zero section in EY, because zero section is
not a closed embedding in E, so that we cannot take its complement. Proof: The fiber over L € Bung,, is

RT(LY @ Q)[1] =BH (LY @ Q) x H' (LY @ Q)
where Speck — BG is not a closed embedding in general, since its fiber is G.
This diagram captures a lot of constructions before.
Claim 4. Consider the following diagram.:
Fy
Shv(Sym"™ X)

T'res

Shv(Bung) —— Shv(Bung) —2L Shv({(L,s € D(£))})

J/res* to 0

Shv(Bung,, )
F
Then:
1. Fy = coeffy, )
2. F, =C1T,

Proof. Claim 1: For convenience, we fix D € Sym™ X and take the fiber over it, using that the x-fiber of
coeff,, 1(F) under {D} < Sym" X is coeff p 1(F). The image of {D} — Sym" X C {(£,s € I'(£))} is given
by

(£,5) =(O(D),1 € T(O(D)) € En,

so the Fourier transform works along (E,/)., the fiber over £ = O(D) € Bung,,, where
(EX)e={0 = Q(~D) = & = O — 0} = Bunyy "

Recall the required definitions:



e coeffp s : Shv(Bung) — Vect maps
F > RU(Buny ™), ply pF @ 9} (AS))
where
— Bun"P) = {0 Q(-D) - €& — 0O —0},

(=D)

— PN.D: Bun! — Bung maps the extension to &,

— ¢p : BT & HY(X,Q(-D)) — H'(X,Q) ~ Al
e FT maps piF to pro.(prip;F @ ev*AS), so its restriction to {D} is

PriphF @ ev* AS € Sh(EY Xpune, En) 5 Shv((EY) ) 25 Vect

Now the restriction of piF to (E)). coincides with p!N,D(]-'). Also, note that ev restricted to (E,)/ is the
same as the pullback along the Serre duality pairing

()i ={0-00LY - €00} =LY )] ~I(L)" > AL

which is exactly the same with ¢¥p. Therefore, we have the following commutative diagram:

Bun(™?) (EX) e
V Jw’)\
PN,D
E) XBung, En —5— A {D}
resr \[
pri pra
X ‘[ \ /
Bungp Bung

from which we can show that
plNyD}' =respprip,F VF € Bung
respev AS = Y AS
and

resy o FT o p*F = resypro (prip,F @ ev*AS)

= RU.((E))z, resipripiF @ respev™ AS)

= RU((EY), pv,pF ©@ $pAS)

= coeff p 1 (F).
So these two are the same maps.

Claim 2: The general principle is:
(% — restriction to 0) o FT = | — pushforward.
In our case,
Bunpg
/ X)
Bung Bung,,

so that

CT = qip* =resjo FT op* = Fy.
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23.2 Towards Fourier theory of cuspidal sheaves

Upshot: if F is cuspidal, then
FTop*F € Shv({(L,s)})

is !—extended from the complement to the zero section = [[Sym”™ X. This tells us that p*, 5 oF is
uniquely determined by coeff,, 1(F).

Remark 49. For functions, the same analysis says that cuspidal f is determined by its Whittaker coefficients.
Recall our earlier setup:
e o: irreducibel SLs-local system on X
e Wanted: F, on Bung cuspidal with specified expansions.

Claim 5. F, is “overdetermined,” (assuming some properties.)

Proof. For n >> 0, we have

—n+2g—2 smooth with connected fibers B

Bung ung -

We know that F,|g  —n+2s—2 is FT of o™ so the restriction of F, to Bung,n”g_Q is determined. On the
B
other hand,

e One can see o™ is an irreducible perverse sheaf.

e So F, must be an irreducible perverse sheaf (here we assumed full support; otherwise pullback to
Bung.)
e Such an irreducible perverse sheaf is determined by its restriction along a smooth map.
Therefore, restriction to Bung" 72 already determines the whole F,. O

Our dream statement is: Cuspidal F can be recovered from its Fourier expansion
Shv(Bung) fcooftn}, H Shv(Sym"™ X).

However this is impossible because it is not fully faithful: RHS being a product kills this possibility. We need
some communications between different n’s.

There are various solutions to this problem. Some use Drinfeld’s compactification, etc. In this class, a
lazier approach will be used, with Hecke and CS. All approaches use some version of Ran’s space.

23.3 Hecke Symmetries

Let G be a general reductive froup, and G be its Langlands dual.
Hecke symmetry version 1.0:

Given V € Repg, « € X, then Ty, : Shv(Bung) — Shv(Bung).

Example 47. For G = GL,, or PGL,, their dual G = GL,, or SL, and their standard representation V.,
we recover our earlier construction.

Briefly, the Hecke stack at x is
He = {(Pc,ﬁ(/;ﬁ :Palx\e 75VG|X\x)}

where Pg, 752; are G-bundles. Hence we have
Ha
>N
¥
Bung ’ch"c Bung
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where

7{loc _ 7)(;ajSZ; on l)fil
v T: iso Pg|15m2730\f,z

and D, = Speck[[t,]] 2 D, = Speck((t,)).

Remark 50. This is generalization of the standard Hecke stack, where we considered rank n vector bundles

with € C &' C E(x).

Remark 51 (Basic structure). Its geometric points up to isomorphism are given as AT, dominant coweights
for G. For example, there are locally closed substacks Ho* of HIo¢ for each dominant coweight lambda, and

il CH if and only if i < A,

that is, X — i equals to some sum of simple coroots.

We have
HY® = LTG\Gre.q

where the loop groups are

o

LG = Map(D,, G)
LTG =Map(D,,G)

and LTG C LG. Indeed, the definition of Grg , fixes trivialization of £ = D, x G, so that there is a pullback
diagram

Moo e Gra

l |

BLTG = Bung(D,) +—— *

triv

which also holds for the quotient LT G\Gr¢ , in the place of Hloe.
Moreover, there is a natural isomorphism Grg ~ LG/L*G, so we may write the local Hecke stack as

H® = LYG\LG/L*G = Bun(Dy) X, Bun(D)

and its global version as
Bun(X) Xpun(x\z) Bun(X).

Remark 52. There is a canonical functor
Rep G — Shv #H!¢, VA Icﬁloc,fx

that maps a representation to corresponding intersection cohomology sheaf. This is called the geometric Satake
functor.

66



24 Geometric Hecke Symmetries: 09/12/2025

Scribe: Michael Horzepa

24.1 With a fixed x

Let us recall that last time, after fixing x € X, we draw the following diagram to describe the Hecke Stack
at that point:

Bung
Hloe ~ TG\ Gro,

We recall that LT G\ Grg,, is the points of X indexed by the dominant coweights of G. Now if we are

given a highest weight representation VA e Rep G, we can construct the intersection cohomology sheaf
IC =1Cx € Shv(L*G\ Grg ) on the local Hecke stack H'¢. This allows us to construct the associated
Hecke functor:

Tys , : Shv(Bung) — Shv(Bung)

A,I
+—

F s ho (B (F) @ 4'1C)

We can summarize what’s going on more explicitly in the following:

Ha

h { Pg on X + isom } {ﬁGOHDI-i-iSOHl}
Bung

Palx\e ~ Pelx\« PG|D°m':PG|D°m

\ |
/ Twisted version of
Pg

GI"G@

There is in turn the substack ﬁ;\ C H, which is a twisted version of @2 € Grg such that
7' IC* = IC s [shift].

The way to think about this construction is to view the IC sheaf as a sort of measure and the pull-back-
push-forward operation to be like integrating your sheaf against the measure. Viewed through this lens this
is very similar to standard Hecke algebras.

We can further make sense of Ty, for general V' € Rep G. First, we simply decompose along the irreducible
representations:

VZ@VS‘Q@M;\, M5 € Vect.

The Mj encode the multiplicity of the representation via its dimension. The corresponding Hecke Operator
is then:

TV,I = @TVX@ ® MS\
A part of Geometric Satake Theory states that these operators should be compatible in the following way:

TveoTwe = Tvews,
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and even better (depending on x € X):
Rep G ~ Shv(Bung)
24.2 Allowing x to vary

This is nice for when =z € X is fixed, but now what if we want to vary X? Then we need to upgrade our
original picture for the Hecke stack:

2 { Pg, P,z € X, + isom }
/ X \F)GJX\I = PG|X\9:
P
Bung Bung x X

HY¢ — {x € X + apt of LT G\ Grg x}

This is the moving points version of our earlier construction. Then once again we can use these maps to
construct the Hecke functor for a representation V € Rep G:

v : Shv(Bung) — Shv(Bung x X)

This functor has the basic property that taking the fiber at any = € X gives exactly the map Ty, that we

constructed before. So we have just sensibly brought together all the Hecke operators for each point
Now we can compose these new Hecke operators:

(Tw x Idx )Ty : Shv(Bung) Shv(Bung x X?)
| e
TwTy Shv(Bung x X)
These operators then have the following properties:
1. AYTwTy = Tvew
2. TwTy = swapyz o Ty Tw
3. The two properties above are compatible

In essense these enforce a commutativity constraint on our functors
The ultimate form of what these current Hecke symmetries provide is a functor

Rep G! ® Shv(Bung) — Shv(Bung x X7T)

for each I € FinSet, which satisfy all the same compatibilities as above whenever you have a map of finite

sets I — J. But, let’s say we instead only want endofunctors on the category Shv(Bung). We can correct
this by selecting some & € Shv(Buné) for V€ Rep G!. Then we define

Ty, : Shv(Bung) — Shv(Bung)
as the following:

Shv(Bung) —Y Shv(Bung x X71)

l—@’p;w)
\
\ Shv(Bung x X7)
\\\ TV,@ J{
AN P1x

“~~~3 Shv(Bung)
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Once again, the idea is that ¢ acts like a measure on X' along which we integrate to get our final output.
Example 48. Let [ = x the singleton set, and suppose we take & = §,, the skyscraper sheaf at x € X. Then
Tve =Ty,

Example 49. Let I = {1,2}, and suppose V.=V, @ V5. Then the corresponding Hecke operator should be

the “integral”:

/TV17I1TV2,I2 611,I2d‘r1d‘r2

There are various relations between these functors, and in fact the following diagram produces Hecke
Functors which are canonically isomorphic:

Shv(X) ® Rep G? 1 (tonsor) Shv(X) ® Rep G
J{A,k@[d

Shv(X?) @ Rep G?

24.3 The Category Rep Gra, and Geometric Casselman-Shalika

So we generate a large supply of these Hecke functors, but we would like some way to organize them all. It
turns out the category

Rep GRran = colim;_, ; Shv(X”7) @ Rep G/,
is the source of them all. Let us take time to study this category itself. Firstly, the colimit is taken over the
twisted arrows category over FinSet. This means for each I ER J € Tw(FinSet), we have an insertion map:
Shv(X”) ® Rep &7 2% Rep G ran
These insertion objects are the basic objects of our category. Furthermore, for each commutative square

Ile]l

L

IQL)JQ

we have the following canonically commutative diagram:

Shv(X”1) @ Rep G

A, ®(tensor) Rep éRan

Shv(X”2) @ Rep G2
There are even higher compatibilities on top of this, but we won’t discuss them here.
So the new ultimate form of our Hecke operators lie in the symmetric monoidal category Rep G gqy acting

on Shv(Bung) via endofunctors. The operation making the category into a monoid is the following (defined
on the insertion objects, but clearly extends to the full category):

insg, (G1 @ V1) xinsg, (G2 @ Vo) = insy, 114, (61 W &2) @ (V1 © V2))
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Here we note that ®; X &, € Shv(X 7/t nl 72) while V; ® V € Rep GI+12 - An object in Rep G gan is a moving
picture in some sense, where a single picture may consist of points of X with attached representations, but
as the picture moves and points collide, the representations tensor over the target point.

Let us back up for a moment, and return to the case where G = PGLy. Let D = ) n;x; be an effective
divisor on X, which gives rise to the Hecke functor Tp. Letting V" = Sym"?(Std) (Std indicates the standard
representation of PGLs) at x;, we obtain a correspondence

Tyni a, <> P V™ @6,

The following theorem then allows us to allow us to use our Hecke functors to enable fourier coefficients
of any degree to talk to one another:

Theorem 15. (Geometric Casselman-Shalika)
coeff p (F) =~ coeffo1(Tp (F))
This generalizes to any G, where our divisor D is taken instead to be a At -valued divisor.

Remark 53. If we take the x-version this also holds.

Remark 54. This was proven by Frenkel, Gaitgory, and Vilonen, but an alternate proof exists by Ngo.
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25 The Geometric Langlands Conjecture: 11/12/2025

Scribe: Zachary Carlini

25.1 Geometric Hecke Eigenforms

Recall from last time that we constructed an action of the monoidal category Rep G gan on Shv(Bung). We
will use this action to finally give the complete definition of a Hecke eigensheaf.

Let o be a G-local system on X. Then o is classified by a map 7 (X) — G, so for any representation
G ~ V, we can form the composition 7, (X) — G — GL(V) to obtain a map 7 (X) — GL(V') which classifies
a local system on X. Thus, we can associate to o a (monoidal, exact) functor Rep G — Shv(X), V + V,
which sends a representation of G to the resulting local system on X.

We want to construct a monoidal functor F, : Rep G ran — Vect which will play the role of the weight of
our Hecke eigenform (recall that in the decategorified setup, an eigenvector of an algebra has a weight given
by a character of that algebra, and Vect categorifies the scalars). A cartoon of F, is depicted in figure

Vy
. ?.\/% — «VF)‘\X® <(Vk/)6)7 ® ((V236>2

Figure 2: A cartoon of F,

Formally, F,, will be the unique functor which, for each map of finite sets f : I — J, makes the following
diagram commute:

Shv(X”7) ® Rep G*

ins¢
9®V1®V2®"'®Vk'—>y®(vl)a&(Vé)ag’”'(vk)ﬂl \

Shv(X7) ® Shv(X?! Rep G Rran

FOF (D)) (g)xyl XU)

Shv(X! x XT) ——— Shv(X!) —— Vect,
Al r

where Ay : X7 — X7 is the map which sends (z;)jes to (zs3i))icr-

Example 50. Let I be a finite set, let f = id;, and let x = (xi)ier be a point in XTI, Let (V;)ier be an
I-indezed tuple of G-representations. Then F, (6, @ (V;)icr) = Q,c; i (Vi)s). This is what is depicted in
figure[3

Using F,, we obtain an action of Rep Gran on Vect given by .7 « V = F,(#) ® V. Thus, we can define
a Hecke eigensheaf as follows:

Definition 34. A Hecke eigensheaf on Bung with weight o is a (ezact, continuous) Rep G pan-linear functor
Vect — Shv(Bung), where Rep Gran acts on Vect through F,.

We will typically abuse notation and identify a Rep G ran-linear functor F with the sheaf F (Q,) since this
determines F'(V') up to isomorphism for every other vector space V.

Example 51. For & € X and V a G-representation, there is an element Vi, in Rep Gran which is the
image of O, ® V' under the structure map Shv(X) ® Rep G — Rep Gran. If Rep GRan acts on Vect by F,
for some local system o, then Vy x Q, = (V,)z, so for any Hecke eigensheaf .F with weight o, we have
Vo * F = (V,), ® . But by definition, Vy x F is what we were calling Ty (:F) back in section . Thus,
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definition is stronger than the naive definition of a Hecke eigensheaf, which is just a sheaf & on Bung
together with isomorphisms Ty 4 (F) = (Vy)s @ F for all V and x.

Definition 35. A normalized Hecke eigensheaf is a Hecke eigensheaf F together with an isomorphism
coefl| (F) 2 Q.

25.2 What Is Known
25.2.1 In Characteristic 0
In characteristic 0, the following statement is known, which was called the Geometric Langlands Conjecture:

Theorem 16 (GLC I-V). For every irreducible local system o, there is a unique (up to contractible choice)
normalized Hecke eigensheaf F, with weight o. Equivalently, if Shv(Bung), is the category of all Hecke
eigensheaves with weight o, then coeff) : Shv(Bung), — Vect is an equivalence.

Who is .%,7?
1. %, is cuspoidal.

2. There is a (useful? explicit?) formula for .%,. There is an object P, in Rep G Ran called the Beilinson
spectral projector which is the unique Hecke eigen-object of weight o for Rep Gran ™ Rep Gran.-
Informally, P, attaches the regular representation of G to every subset of X, twisted by o. Formally,

P, is uniquely characterized by the formula:
Hom(1, P, x V) & F,(V),

where the isomorphism is natural in V. Then %, = P, x Poinc;, where Poinc, is the vaccuum Poincare
sheaf

This is manifestly a Hecke eigensheaf. The non-obvious fact is that it is nonzero. The analogy to
eigenvectors of algebras is the following: given a linear linear functional ¢ : A — k on an algebra A, one
can define a universal eigenvector of A of weight o to be the A module generated by a single element
1 subject to the relations a.1 = o(a).1 for all a € A. Tensoring this module with any other A-module
M gives the o-weight space M, of M. One can show that o is actually a character by producing a
module M such that M, is nonzero. The statement that P, x Poinc, is normalized is analogous to the
statement that M, is one-dimensional.

3. Z, is perverse up to a normalizing shift.

4. Up to a shift, F, is a direct sum of simple perverse sheaves.

Easy setup: o is ”Schurian”, meaning Aut(c) = Zx. In this case, the restriction of F;, to any irreducible
component of Bung is simple.

In general, we have:

1%

Zo= D T

p€lrrep(Aut(o))
where the F,, , are pairwise distinct simple perverse sheaves up to a shift. There are canonical identifi-
cations:

mo(Bung) = m(G) = Irrep(Zy),

and the support of %, , lies in the connected component of Bung corresponding to the central character
of p.

5. The singular support of .%,, which is a subvariety of 7" Bung = Higgsq = {(pg, ¢ € 956 @ 1)}, is
contained in the subvariety Nilp = {(pg, ¢) : ¢ is nilpotent}.

. The characteristic class of .%, is [Nilp], which allows us to compute that the generic rank of .%, is
I d2di—1(g=1)

i

N

, where (d;); are the degrees of G.

6. In the D-modules setup, %, can be described as the D-module freely generated by a single generator
subject to some explicit relations after choosing an oper structure on o. This result is due to [BD91].
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25.2.2 1In Positive Characteristic

We know that coeff) : Shv(Bung), —> Vect is fully faithful, but we don’t know that Shv(Bung), is nonzero.
When %, exists, statements l and 5| go through, but statement is unknown, and statement |§|

does not make sense.
When G is GL,, PGL,, or SL,?, normalized Hecke eigensheaves exist for all .
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