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1 Introduction: 02/09/2025 (Minghan)

Scribe: Minghan Sun

Prerequisites

There are three main prerequisites for the course:

1. Algebraic geometry on the level of Hartshorne.

2. Algebraic topology.

3. Representation theory.

1.1 Abelian Extensions of Q
In his proof of Quadratic Reciprocity, Gauss uses the following result.

Theorem 1 (Gauss sums). Suppose p is a prime. We have three identities.

1. If p ≡ 1 (mod 4), then

±√p =
∑

x∈(Z/p)×

(
x

p

)
ζxp . (1)

Here ζp = e2πi/p is a primitive p-th root of unity and
(
x
p

)
is the Legendre symbol, i.e.

(
x

p

)
=

{
1 if x ∈ F2

p,

−1 else.
(2)

2. If p ≡ 3 (mod 4), then

±i√p =
∑

x∈(Z/p)×

(
x

p

)
ζxp . (3)

3. If p = 2, then
±
√
2 = ζ8 + ζ78 . (4)

Example 1. Suppose p = 3. Then we have∑
x∈(Z/3)×

(x
3

)
ζx3 =

(
1

3

)
ζ3 +

(
2

3

)
ζ23

= ζ3 − ζ23
=
√
3i,

(5)

as asserted in Theorem 1.

Remark 1. The interested reader can find proofs of the Gauss sums (Theorem 1) in Serre’s A Course in
Arithmetic.

Theorem 1 implies the following general fact.

Proposition 1. Suppose p is a prime. Then

Q(
√
p) ⊂


Q(ζp) if p ≡ 1 (mod 4),

Q(ζ4p) if p ≡ 3 (mod 4),

Q(ζ8) if p = 2.

(6)
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Let’s say a few words about the structure of the cyclotomic fields Q(ζN ).

Theorem 2 (structure of cyclotomic fields). For all N , Q(ζN ) itself is an abelian extension of Q. Moreover,

the map χ : Gal(Q(ζN )/Q)→ (Z/n)× given by σ 7→ χ(σ) such that σ(ζN ) = ζ
χ(σ)
N is an isomophism.

One of the greatest gems of classical number theory is the following generalization of Proposition 1.

Theorem 3 (Kronecker-Weber). Suppose F/Q is an abelian Galois extension. Then there exists some N
such that F ⊂ Q(ζN ).

Remark 2. So far, we have given a complete and explicit description of all abelian Galois extensions of
Q. In the next subsection, we will begin to discuss class field theory (CFT), which concerns abelian Galois
extensions of what are called “global” and “local” fields.

1.2 Basic CFT

We begin by defining global and local fields.

Definition 1 (number fields and function fields). A number field is a finite extension of Q. A function field
is a field of the form Fq(X0), where X0 is a geometrically connected smooth projective curve and Fq(X0) is
the field of rational functions on X0.

Definition 2 (global fields). A global field is either a number field or a function field.

Definition 3 (local fields). A local field is R, C, a finite extension of Qp, or a finite extension of Fq((t)).

Remark 3. We can equivalently define a local field as a locally compact (topological) field.

Definition 4 (places of global fields). Suppose F is a global field. A place of F is a norm ν on F such that
Fν (the completion of F with respect to ν) is a local field.

Example 2. Q has a place whose completion is R and also a place for each prime p whose completion is Qp.
The places of Fq(X0) are indexed by closed points on the curve X0.

Definition 5 (adeles). Suppose F is a global field and P the set of places of F . We define the adeles of F ,
denoted AF , as the additive subgroup of the product∏

ν∈P
Fν (7)

consisting of elements x = (xν) such that xν ∈ Oν almost everywhere (i.e. for all but finitely many places).

Remark 4. In Definition 5, if ν is a nonarchimedean place (i.e. not R or C), then Oν denotes the ring of
integers of Fν .

Remark 5. Note that we have a natural diagonal embedding ι : F → AF mapping F to each of its completions.
When we study global fields in number theory, we often first work with local fields and collect our results

into the adeles. Then, the real work consists in understanding the map ι.

Lemma 1 (adeles of Q). We have

AQ = (Ẑ⊗Q)× R = (Ẑ× R)⊗Q, (8)

where Ẑ = lim←−n→∞ Z/n.

Proof. Left as an exercise to the reader.

Proposition 2. Suppose F is a global field. We have two facts.

1. F , regarded as a subspace of AF via the diagonal embedding ι : F → AF , is discrete.

2. AF /F is compact.

Remark 6. Proposition 2 roughly says that the relationship of F to AF is somewhat analogous to the
relationship of Z to R.
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2 More Adèles, CFT, etc.: 04/09/2025

Scribe: Max Steinberg
Today, we will discuss more on adèles, CFT (not conformal field theory), etc.

2.1 Structure of Non-Archimedean Local Fields

Let K be such a field. By definition (or by classification), K is a finite extension of Qp or Fq((t)).

2.1.1 General structure

We have OK ⊂ K the ring of integers in K. It is the unique compact open, integrally closed subring.

Example 3. OQp
= Zp, K/Qp is finite, OK is the integral closure of Zp. If K = Fq((t)), OK = FqJtK.

We can think of OK =
{
x ∈ K

∣∣∣|x| ≤ 1
}

w.r.t a suitable norm (i.e. the norm generating the topology). We

recall that OK is a DVR (discrete valuation ring), i.e. ∃!m ̸= 0 prime (maximal) such that m = (ϖ) (called
the “uniformiser”) and OK/mK = kK , the residue field, which is a finite field.

If K is a local field, a finite extension L/K (which automatically makes L a local field) is unramified if
OL/OK is an étale extension (⇐⇒ ϖK generates mOL

).
Reminder: étale extensions are a generalisation of separable field extensions to commutative rings.

Example 4. Fqn((t)) is unramified over Fq((t)). All unramified extensions have this form.

It is a fact that the following groupoids are isomorphic:

{L/K unramified} ≃−→ {k′/kK}
L 7→ OL/mL

Motto: unramified extensions of K are in bijection with extensions of its residue field.

Example 5. (Z3)3 ≃ F3 (where the left-hand side denotes Z3, the 3-adic integers, localised at the prime 3),
F9 /F3, F9 = F3[

√
2] and the corresponding unramified extension is Q3[

√
2].

Reminder: if k is a field, Gal(k) := Gal(ksep/k) = lim←−Gal(k′/k) with k′/k a finite Galois extension with
ksep/k′/k. If k is a finite field, k = Fq, q = |k|, there is a distinguished element Fr = Frq ∈ Gal(k), with
Fr(x) = xq, x ∈ k. This fixes Fq because xq = x exactly for x ∈ Fq, and is an automorphism of Fq by
finiteness and (x+ y)q = xq + yq. There is a canonical map

Z→ Gal(Fq)

1 7→ Frq

The profinite completion of this map is an isomorphism Ẑ ≃ Gal(Fq).
Remark: the Weil group WFq of Fq is Z ⊂ Gal(Fq) generatd by the Frobenius. It is an error in nature

that Gal(Fq) = Ẑ not Z and the Weil group corrects this in an ad-hoc way.
Remark: You can picture SpecFq as

with the idea that π1 = Z just like how Gal(Fq) “=” Z.
Claim. Let K be non-Archimedean, k its residue field. Then the earlier discussion gives a map Gal(K)→

Gal(k) ≃ Ẑ: We construct Kunr ⊆ Ksep the union of all finite unramified extensions. Then Gal(K) :=
Aut(Ksep/K)→ Aut(Kunr/K) ≃ Aut(k/k) by the previous discussion.

Definition 6 (Weil group). For K a local field, the Weil group of K, WK , is the preimage of Z ⊂ Ẑ under
this map, topologised in a natural way.
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2.2 Main Theorem of Local CFT

Theorem 4 (Main Theorem of Local CFT). W ab
K ≃ K× “canonically”. In fact, the following diagramme

commutes:

W ab
K K×

Wk = Z

≃

v

Remark: (by inspection) this also holds for Archimedean local fields.

A note on the structure of K×: there is a valuation K×
v−→ Z, the unique valuation with v(ϖ) = 1. In

fact, ker v = O×K .

Corollary 1. Gal(K)ab ≃ (K×)∧, where (−)∧ is the profinite completion functor.

2.3 Global Setting

Let F be a global field and v a place of F , and Fv the corresponding local field.

F Fv

F sep F sepv

⊆
⊆

This gives rise to a map Gal(Fv) → Gal(F ) (well-defined up to conjugation). (If you want to learn more,
look up “decomposition group.”)

If we want to understand Gal(F )ab, we know it receives a map W ab
Fv
→ Gal(Fv)

ab → Gal(F )ab. We can
write the diagramme:

F×v W ab
Fv

Gal(Fv)
ab

Gal(F )ab

These combine into a map A×F → Gal(F )ab.

Theorem 5 (Main Theorem of Global CFT). We have the following:

1. The composition F× ⊂ A×F → Gal(F )ab is trivial (“Artin reciprocity”)

2. The induced map (A×F /F×)∧ ≃ Gal(F )ab.

Example 6. F = Q, A×Q = R××
∏′Q×p , and A×Q /Q

× = R≥0×
∏

Z×p . The map is (x∞, (xp)) 7→(
|x∞|

∏
p−vp(xp),

(
|xp|p

∏
p−vp(xp)

))
.

Then (A×Q /Q
×)∧ ≃

∏
Z×p = Ẑ

×
. Last class we discussed Gal(Q(ζn)/Q) = (Z /n)×, and passing to the

inverse limit gives rise to Global CFT.
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3 Étale Fundamental Groups and the Analytic Jacobian: 09/09/2025

Scribe: Zachary Carlini

3.1 Étale Fundamental Groups

For a more detailed treatment of this material, see [Gro71].
Let X be a connected scheme (which is usually assumed to be normal). Let K be a separably closed field,

and let x0 be a K-point of X. From this data, the theory of ètale fundamental groups produces a profinite
group πét

1 (X,x0). We will suppress x0 from the notation when the choice of x0 is unimportant, so we will
write πét

1 (X) instead.

Example 7. For k a field and K its separable closure,

πét
1 (Spec k, SpecK) ∼= Gal(K/k).

Example 8. For X a smooth variety over C and x0 ∈ X a closed point,

πét
1 (X,x0) ∼= πtop

1 (Xan, x0)
∧,

where Xan denotes the analytification of X, πtop
1 denotes the topological fundamental group, and ∧ denotes

the profinite completion.

The étale fundamental group has the following characterization: an action of the étale fundamental group
on any finite set S corresponds to a finite étale cover Y → X together with a bijection between S and the set
of sections of the fiber Y ×X x0 → x0. Equivalently, we can define πét

1 (X,x0) to be the automorphism group

of the functor Schfinite,étale/X → FinSet which sends a cover π : Y → X to the set of y ∈ Y (K) with π(y) = x0.

If X̃ → X is a finite étale cover between connected, smooth varieties over C, then the induced map
X̃an → Xan is a finite covering in the sense of algebraic topology. The Riemann Existence Theorem provides
a converse.

Theorem 6 (Riemann Existence). If X is a smooth variety over C, and X̃an → Xan is a finite cover, then
X̃an admits a unique variety structure X̃ compatible with the variety structure on X (i.e. regular functions
on open subsets of X pull back to regular functions on X̃), and the projection X̃ → X is a finite étale cover.

Example 8 is a corollary of the Riemann Existence Theorem.

3.2 Geometric CFT

Now, suppose K is a non-Archimedean local field with ring-of-integers OK . Let kK be the residue field of
K, i.e. the quotient of OK by its maximal ideal. Recall from yesterday that we had a bijection:

{L/K unramified} ≃−→ {k′/kK}
L 7→ OL/mL

We may now reformulate this as a statement about fundamental groups. Namely, the map SpecOK →
Spec kK induces an isomorphism πét

1 (SpecOK)
∼−→ πét

1 (Spec kK).
We also have a map SpecK → SpecOK . This induces a map πét

1 (SpecK)→ πét
1 (SpecOK), which we can

identify with the surjection Gal(K)↠ Gal(k) mentioned yesterday. This gives a geometric interpretation of
our discussion of local class field theory.

Next, we will give a geometric interpretation of global class field theory in the case of function fields. Fix
a finite field Fq and a smooth projective curve X0 over Fq. Let F be the field of rational functions on X0,
and let A be its ring of adèles. Recall from yesterday that we had an isomorphism

Gal(F )ab ∼=
(
A× /F×

)∧
. (9)
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Fix an algebraic closure F̄q of Fq, and let X denote the base-change X = X0 ×Fq F̄q. Let U0 ⊂ X0 be

open, and let U = U0 ×Fq
F̄q. We define the Weil group WU0

of U0 to be the preimage of Z ⊂ Ẑ along the
map πét

1 (U0)→ πét
1 (SpecFq) induced by U0 → pt. There is an exact sequence:

1→ πét
1 (U)→WU0 → Z→ 0,

and we endow WU0
with the topology that makes it a topological disjoint union of cosets of πét

1 (U) with its
profinite topology (note that this is not the same as the subspace topology coming from WU0

⊂ πét
1 (U0)).

For every closed point x ∈ X0, let Ox be the ring of integers in the completion of F at x. There is a
homomorphism O×x → A× which sends f ∈ O×x to the adèle which is f at place x and 1 everywhere else.
Global class field theory produces an isomorphism:

W ab
U0
∼= F×\A× /

∏
x∈U0

O×x . (10)

The isomorphism (9) is obtained from (10) by taking profinite completions and taking the limit as U0 → ∅.

Question 1 (Deep). What is the correct analog of WU0 for a number field? This is referred to as the
“Langlands group” in the literature. Constructing the Langlands group and proving that it has the desired
properties is still an open problem.

For ease of exposition, we will now specialize to the case where U0 = X0. We want:

W ab
X0
∼= F×\A× /

∏
x∈X0

O×x ,

so we should unwind F×\A× /
∏
x∈X O×x .

First, for each x ∈ X0, let Kx be the completion of F at x. Then Ox is a DVR with fraction field Kx, so
K×x /O×x ∼= Z. Since A is, by definition, the restricted direct product of the Kx, we have:

A× /
∏
x∈X0

O×x ∼=
⊕
x∈X0

Z = Div(X0).

Next, the map F× → K×x /O×x ∼= Z sends a rational function f to its order of vanishing at x, so F× →
A× /

∏
x∈X O×x ∼= Div(X) sends a rational function to its divisor. Therefore, we have:

F×\A× /
∏
x∈X0

O×x ∼= F×\Div(X0) ∼= Pic(X0),

where Pic(X0) denotes the group of algebraic vector bundles on X0 with the group operation of ⊗. For a
reference on divisors and line bundles, see [Har77][Chapter II.6].

Now, unramified global class field theory can be stated as an isomorphism:

W ab
X0
∼= Pic(X0).

Moreover, the map WX0 → Z identifies under this isomorphism with the map that sends a line bundle to its
degree. We will construct the map WX0

→ Pic(X0), but first we will try to understand an easier toy model.

3.3 A Toy Model for Geometric Class Field Theory

Let X be a smooth, projective curve over C. From [Ser56], we have an isomorphism Pic(X)
∼−→ Pic(Xan),

and from general theory we have Pic(Xan) ∼= H1(X,O×X).
From complex analysis, there is an exact sequence of sheaves:

0→ Z(1)
Xan
→ OXan

exp−−→ O×Xan → 0,

where Z(1) = 2πiZ ⊂ C. Taking global sections gives a long exact sequence:

0→ H1 (Xan,Z(1))→ H1 (Xan,O)

→ H1
(
Xan,O×

) d−→ H2 (Xan,Z(1))→ 0 (11)

9



(Here, we have used the fact that the exponential map induces a surjection fromH0(X,O) ∼= C toH0(X,O×) ∼=
C×). We may identify H1 (Xan,O×) ∼= Pic(Xan) and H2 (Xan,Z(1)) ∼= Z, in which case d becomes

Pic(Xan)
deg−−→ Z. Thus, ker(d) is the group of holomorphic line bundles on Xan with degree 0, which

we denote Jac(Xan). From (11), we obtain a short exact sequence:

0→ H1 (Xan,Z(1))→ H1 (Xan,O)→ Jac(Xan)→ 0.

If g is the genus of X, then H1 (Xan,Z(1)) ∼= Z2g and H1 (Xan,O) ∼= Cg, so Jac(Xan) ∼= Cg /Z2g is the
quotient of a complex vector space by a lattice. In particular, Jac(Xan) acquires a natural complex-analytic
geometry, and with respect to this geometry, Jac(Xan) is a compact, complex Lie-group. Over R, Jac(Xan)
is isomorphic as a Lie group to (S1)×2g, but the complex-analytic structure of Jac(X) will depend on the
complex-analytic structure of Xan.

10



4 Geometric Class Field Theory: 11/09/2025

Scribe: Joakim Færgeman

4.1 Geometric Class Field Theory In Terms Of Fundamental Groups

Let us take a moment to orient ourselves. For X0 a smooth projective curve over a finite field Fq, we saw
that class field theory for the global field Fq(X0) took the following form.

We defined the Weil group WX0
that sits in a short exact sequence:

1→ πét
1 (X)→WX0

→ Z→ 0.

Here, X/Fq denotes the base-change of X0 to Fq. Class field theory says that we have an isomorphism of
groups:

W ab
X0
≃ Pic(X0),

where we remind that Pic(X0) denotes the group of line bundles on X0 up to isomorphism.

We want a version of class field theory that generalizes to the complex numbers (and in fact any field).
We will refer to this generalization as geometric class field theory (GCFT). Let X/C be a smooth projective
curve over C. We have:

Jac(X)an = Ker
(
H1(Xan,O∗)→ H2(Xan,Z(1))

)
.

This is the group of degree 0 line bundles on X.1 We expressed

Jac(X)an ≃ H1(Xan,O)/H1(Xan,Z(1))

as a complex manifold. We remind that if g = g(X) denotes the genus of X, then dimCH
1(Xan,O) =

dimCH
0(Xan,Ω1). Fix a point x0 ∈ X. This induces an Abel-Jacobi map:

AJx0
: Xan → Jac(X)an, x 7→ O(x− x0).

One version of geometric class field theory states:

Theorem 7 (One version of GCFT). The map AJx0 induces an isomorphism of groups πtop
1 (Xan)ab

≃−→
πtop
1 (Jac(X)an).

The rest of this subsection is devoted to sketching the proof of this theorem. We will see that the proof
comes down to spelling out a certain compatibility between Poincaré duality and Serre duality for Xan.

Recall that on general grounds, we have a canonoical isomorphism of abelian groups:

πtop
1 (Xan)ab

≃−→ H1(X
an,Z).

As we saw above, the universal cover of Jac(X)an is H1(Xan,O) ≃ Cg. Thus, we have an isomorphism:

πtop
1 (Jac(X)an) ≃ H1(Xan,Z(1)).

Moreover, Poincaré duality states that the cup product map gives a non-degenerate pairing:

H1(Xan,Z(1))⊗H1(Xan,Z)→ H2(Xan,Z(1)).

Hence, we have H1(Xan,Z(1)) ≃ HomZ(H
1(Xan,Z),Z) ≃ H1(X

an,Z).2 Combining the above, we see
that there is an abstract isomorphism:

πtop
1 (Xan)ab ≃ πtop

1 (Jac(X)an).

1Or equivalently, the complex line bundles that are topologically trivial.
2The last isomorphism follows from the universal coefficient theorem using that H0(Xan,Z) ≃ Z is torsion-free.
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The ”real” content of geometric class field theory is that this isomorphism is induced by the Abel-Jacobi
map AJx0

. We formulate this assertion as the combination of two claims, which we leave as exercises for the
reader.

Serre Duality gives an isomorphism H1(Xan,O) ≃ H0(Xan,Ω1)∗. We saw that Poincaré duality gives an
isomorphism H1(Xan,Z(1)) ≃ H1(X

an,Z). Thus, we get:

Jac(X)an ≃ H0(Xan,Ω1)∗/H1(X
an,Z).

In particular, the combination of the two dualities provides an action

H1(X
an,Z) ↷ H0(Xan,Ω1)∗. (12)

We now spell out this action. Given ω ∈ H0(Xan,Ω1) and a closed loop γ based at x0, we may integrate
ω along γ to get the number ∫

γ

ω ∈ C.

As such, we get a pairing:
πtop
1 (Xan)×H0(Xan,Ω1)→ C.

This factors through the pairing:
H1(X

an,Z)⊗H0(Xan,Ω1)→ C.

Hence we get a map
H1(X

an,Z)→ H0(Xan,Ω1)∗. (13)

Claim 1. The map (13) induces the action (12).

Next, consider the Abel-Jacobi map:

AJx0
: Xan → Jac(X)an ≃ H0(Xan,Ω1)∗/H1(X

an,Z).

Denote by X̃an → Xan the universal cover of Xan. The usual construction of X̃an is as the space of
continuous maps γ : [0, 1]→ X, γ(0) = x0 up to endpoint-fixing homotopy. The composition

X̃an → Xan → H0(Xan,Ω1)∗/H1(X
an,Z)

lifts to a map
X̃an → H0(Xan,Ω1)∗. (14)

Claim 2. The map (14) sends [γ] to the functional (ω 7→
∫
γ
ω).

As such, the map Xan → H0(Xan,Ω1)∗/H1(X
an,Z) is defined by, for x ∈ X, choosing a path γ from x0

to x and getting the corresponding functional on H0(Xan,Ω1)∗, which is well-defined up to translating by
H1(X

an,Z) via the action (12).
Combining the two claims proves the above version of geometric class field theory.

4.2 The moduli stack of line bundles

Our next goal is to give a purely algebro-geometric version of GCFT that generalizes to an arbitrary field.
As such, let k be a field, and let X/k a smooth projective curve. Consider the functor

BunGm
: {commutative k − algs} → {groupoids}

sending a commutative k-algebra A to the groupoid of line bundles on X × Spec(A).
Here is a variant. Fix a point x0 ∈ X(k) (assuming it exists). Consider the functor

Pic : {commutative k − algs} → Sets

12



sending a commutative k-algebra A to the set (L, α) consisting of a line bundle L on X × Spec(A) and α is
a trivialization of L on {x0} × Spec(A) ⊂ X × Spec(A).

Claim The functor BunGm
is representable by an algebraic stack, and Pic is representable by a scheme.3

Let us describe the basic structure of BunGm . It has a degree map

deg : BunGm
→ Z =

⊔
n∈Z

Spec(k).

Informally, this map is simply given by taking the degree of a line bundle. Formally, however, one argues
as follows. Suppose we are given an element of BunGm(A), that is, a line bundle L on X × Spec(A).
We need to produce an object of Z(A), that is, a locally constant function Spec(A) → Z. Denote by
p2 : X ×Spec(A)→ Spec(A) the projection onto the second factor. Since X is projective of dimension 1, the
complex Rp2,∗(L) is quasi-isomorphic to a two-term complex E0 → E1 sitting in degree 0 and 1, where Ei is
a vector bundle on Spec(A). Then the function

χL : Spec(A)→ Z, x 7→ χ(E0x → E1x) = rk(E0x)− rk(E1x)

is locally constant. We let deg(L) := χL + (g − 1) be the desired locally constant function, thus defining the
map deg : BunGm

→ Z.4
Next, let us describe the ”shape” of BunGm

. Let BGm be the stack such that BGm(A) is the groupoid
of line bundles on Spec(A). Recall that BGm admits a smooth cover by the point scheme pt = Spec(k). We
have a canonical map

BGm → BunGm , L 7→ OX ⊠ L.

Fixing x0 ∈ X(k), we get a map in the other direction:

BunGm
→ BGm, L 7→ Lx0

.

Let BunnGm
= deg−1(n). We define Jac(X) by requiring we have a Cartesian diagram

Jac(X) Bun0Gm

pt BGm

These maps combine to give isomorphisms:

BunGm
≃ BGm × Jac(X)× Z,

Pic ≃ ×Jac(X)× Z.

Fact: Jac(X) is an abelian variety (i.e., a geometrically connected smooth proper algebraic group).

Note that we have a canonical5 Abel-Jacobi map:

X → Bun1Gm
→ BunGm , x 7→ O(x).

In line with the previous subsection, the Abel-Jacobi map induces an isomorphism:

πét
1 (X)ab

≃−→ πét
1 (Bun1Gm

).

3We remind that the latter means there exists a scheme P̃ic such that for all affine schemes S = Spec(A), we have a bijection

of sets HomSchemes(S, P̃ic) = Pic(A), functorial in S.
4We add (g − 1) to χL to normalize the degree map such that the trivial line bundle has degree 0.
5In the sense that it does not depend on a base point.
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5 More on Curves: 16/09/2025

Scribe: David Fang
Let X be a smooth curve over k. Remember that a divisor D is a formal finite sum∑

x∈X
nx[x], nx ∈ Z, x ∈ X closed point.

An effective divisor is a divisor where nx ≥ 0,∀x. Then we have the

Fact 1. There is a bijection:

{D divisor} ←→ {L line bundle on with s : OU
≃−→ L|U , U ⊊ X dense}/ ∼,

where ∼ is up to isomorphisms of L and “shrinking U .” Explicitly, for each divisor D we can associate the
pair (O(D), s = 1). The reverse direction is obtained by sending (L, s) to ÷s.

In particular, there is a bijection between effective divisors and pairs (L, s ∈ Γ(L), such that s|U ̸= 0 for
some dense U ⊆ X. We want to generalize this to the situation of “curves over rings” instead. In particular

Definition 7. Let S be a scheme. An (effective) Cartier divisor on S is a pair (L, s) where L is a line
bundle on S, and s is a trivialization of L|U for U ⊂ S dense (resp. s ∈ Γ(L) trivializing L on some U).

Remark 7. When we say U ⊆ S is dense, we mean that S is the minimal closed subscheme of S containing
U (schematically dense).

Definition 8. Given X,S/k as above, a relative (effective) Cartier divisor is an (effective) Cartier
divisor on X × S such that U is universally dense (i.e. for all T → S, the base change U ×S T ⊆ X × T is

dense). In the effective case, we also require that cokerOX×S
s−→ L is S-flat.

Morally, this is supposed to be an S-family of Cartier divisors on X.

Remark 8. For example, a relative effective divisor is dense in every fiber of S (namely, take T to be Spec
of a field in the above).

Example 9. Suppose X = SpecA,X = A1. Then X × S = SpecA[t]. Let s = f(t) =
∑n
i=0 ait

i, ai ∈ A.
This defines a Cartier divisor iff (a0, a1, . . . , an) = A, and effective iff an ∈ A×.

Theorem 8. Let X be a smooth projective curve over k. Then there is a scheme SymX/k such that

S → SymX ⇐⇒ {D an effective relative Cartier divisor on X × S}

Here SymX =
∐
n≥0 Sym

nX, and Sym0X = Spec k,Sym1X = X. More generally, there is a map Xn →
SymnX, which identifies Xn/Sn ≃ SymnX. Also, SymnX is smooth.

Example 10. Let X = A1. Then SymX ≃ An as follows: for a point (a0, . . . , an−1) ∈ An, we can associate
the divisor of zeroes of tn + an−1t

n−1 + · · ·+ a0.

Exercise 1. Symn P1 = Pn.

Now return to the case where X is smooth projective. There’s an obvious map

AJn : SymnX → BunnGm
, (L, s)→ L

Note that AJ−1n (L) = Γ(L) \ 0.

Remark 9. If we work with Picn instead, then AJ−1n (L) = P(Γ(L)) = (Γ(L) \ 0/Gm

Claim 1. For n≫ 0 (i.e. n > 2g − 2, g = g(X)), then

AJn : SymnX → BunnGm

is smooth and surjective. In fact, it is locally a product in the smooth topology.
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Proof. Say Riemann-Roch a bunch. More precisely, if L ∈ BunnGm
, then

Hi(L) ≃ H1−i(L∨ ⊗ Ω1)∨

by Serre duality. Since degΩ1 = 2g − 2, we know that if degL > 2g − 2, then degL∨ ⊗ Ω1 < 0. Thus
H0(L∨ ⊗ Ω1 = 0, so H1(L) = 0 by Serre duality. But by Riemann Roch,

degL = dimH0(L)− dimH1(L) + g − 1 = dimH0(L) + g − 1,

so when degL ≫ 0, we have
dimH0L = degL︸ ︷︷ ︸

n

+1− g.

We in fact have that
{L ∈ BunnGm

+s ∈ L} → BunnGm

is the total space of a vector bundle, given by the pushforward of the universal line bundle on X × BunnGm

to BunnGm
(n≫ 0).

Remark 10. In general (without assumption on n) the space {L ∈ BunnGm
+s ∈ L} will be the total space of

a coherent sheaf (derived if you want) over BunnGm
.

Upshot: there is a map
SymnX → BunnGm

whose fibers are AN \0 (N = n + 1 − g). In particular the fibers become more and more contractible as
n→∞. Alternatively, after picking a base point x0 ∈ X the map

SymnX → JacX

has fibers isomorphic to PN−1.

Remark 11 (A rough analogy). For a manifold M , Dold-Thom says roughly that if we take SymnM for
sufficiently large n, then its homotopy groups in low degree are isomorphic to the homology groups of M .
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6 Strategy for GCFT: 18/09/2025

Scribe: Soumik Ghosh
Exercise: U = SpecA[f−1] ⊂ S = SpecA is dense ⇐⇒ f is a non-zero divisor.
Want to prove: We have the isomorphism

πab1 (X)
≃−→ πet1 (JacX)

⇐⇒ πab1 (X)
≃−→ πet1 (Bun1Gm

)

Remark 12. Th etale fundamental group does not generally satisfy Künneth in char p > 0. But, it is true
for proper varieties/k = k̄

Motto: enemy= wild ramification at ∞.

If A is an abelian variety (smooth, connected, proper group scheme), πet1 (A) is abelian.
Idea: We have the group law m : A×A→ A induces a commutative diagram

πet1 (A×A) πet1 (A)

πet1 (A)× πet1 (A)

m

pr1×pr2 ≃
check this is the usual group structure

6.1 Structure of πab
1 (X)

πet1 is a pro-finite group.
πab1 is pro-(finite, abelian) group.
=⇒ πab1 ≃

∏
l prime(π

ab
1 )l a product of pro-abelian l-groups.

Remark 13. l ̸= p, (πab1 )l behaves like H1(•,Zl) (it is: Het
1 (•,Zl))

If l = p, then it is more complicated.

Example 11. (πab1 (A1))l =

{
0 if l ̸= p

infinite if l = p

6.2 Strategy for GCFT (after Deligne)

We prove: Hom(πet1 (Jac), e×) ≃ Hom(πet1 (X), e×) where e = Q̄l where l ̸= p or e = finite extension of Ql.
It suffices by Pontryagin Duality to prove this assertion.

Recall from topology: IfM is a connected manifold and we have a group homomorphism π1(M)
ρ−→ GLn(e)

where e is a commutative ring, then we have the bijection{
π1(M)

ρ−→ GLn(e)
}
↔ {local system of rank n free e-modules}

There is a theory of l-adic (etale) sheaves in algebraic geometry.

Fix Λ, a commutative ring such that it is ∈


finite of order prime to p

Oe, e/Ql algebraic extension

e/Ql algebraic extension

For all Y , Noetherian scheme, we have lisse(Y,Λ) ⊂ Shv(Y,∆).
We write Shv(Y,Λ)♡ for the abelian category version.
If Y is connected, Lisse(Y,Λ)♡ = RepΛcont(π

et
1 (Y, y)) ie continuous representations of πet1 (Y, y) on Λ-

modules.
We have functors f∗, f∗ for Shv.
Fix e to be an algebraic extension of Ql.
We have the map

{rk 1 lisse sheaves on JacX} restriction along AJ−−−−−−−−−−−−−→ {rk 1 lisse sheaves on X}
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Claim: This is an equivalence.
Strategy: Produce

{rk 1 lisse sheaves on X} {rk 1 lisse sheaves on BunGm
}

{rk 1lisse sheaves on X}

id
AJ∗

Definition 9. σ is lisse on X =⇒ σ(n) ∈ Shv(SymnX)

σ ⊠ · · ·⊠ σ =

n⊗
i=1

pr∗i σ ∈ Lisse(Xn) ⇐⇒ π1(X)n → (GLr)
n → GLrn

These are Sn-equivariant sheaves where Sn is the symmetric group.

We have
addn∗(σ ⊠ · · ·⊠ σ) ∈ Shv(SymnX)

where
addn :Xn → SymnX

(x1, . . . , xn) 7→
∑
i

[xi]

The Sn-equivariant structure becomes an action of Sn on addn∗(σ
⊠n). I take σ(n) := addn∗(σ

⊠n)Sn

Explicitly: fiber of σ⊠n at (x1, x2, . . . , xn) is σx1
⊗ · · · ⊗ σxn

fiber of addn∗(σ
⊠n) at D is

⊕
D=

∑
i xi

σx1
⊗ . . . σxn

and the action of Sn changes the ordering. Say

D = [x] + [y] with x ̸= y. Then the fiber is σx ⊗ σy ⊕ σy ⊗ σx =⇒ space of invariants is isomorphic to
σX ⊗ σy. IF D = 2[x], then the fiber is σx ⊗ σx, so the space of invariants is ≃ Sym2 σx.

Say D =
∑
xi ̸=xj

nixj . So we get the invariant to be ⊗i Symni σxi
Special Case: r = 1, then Symn σx

also has rank 1 and σ⊗nX = SymnX. So σ(n) is a rk 1 local system with fiber at D =
∑
i nixi being ⊗iσ⊗ni

xi

σ(n) on SymnX and for n≫ 0 descends to BunnGm
along AJn.
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7 Towards Hecke Eigensheaves: 25/09/2025

Scribe: Youseong Lee

7.1 Recollection

Given a rank 1 local system σ on X, we want a rank 1 “special” local system χσ on BunGm
such that

AJ∗ (χσ) = σ. Last time, we constructed a rank 1 local system on SymnX

σ(n) := addn∗ (σ ⊠ . . .⊠ σ)
Sn

whose fiber on a divisor D =
∑
i nixi is σ

⊗ni
xi

. A little more formally, one can say:

Proposition 3 (Exercise). The canonical map σ ⊠ . . .⊠ σ → add∗n(σ
(n)) given by adjunction is an isomor-

phism. (Easy to check!)

Remark 14. When rankσ > 1, there may be some extra complication.

Observation from the end of Lecture 5: for n > 2g − 2,

SymnX
AJn−−−→ BunnGm

SymnX → Picn

have fibers AN\0 and PN−1, respectively, for N = n + 1 − g. It follows that σ(n) is constant along these
fibers, so it descends to χnσ ∈ Lisse(Bun

n
Gm

) for n > 2g − 2.
If you like:

1. One can think χnσ as the non-derived pushforward of σ(n).

2. Given a smooth surjective map f : X → Y between smooth X,Y with geometrically connected fibers,
the pullback Lisse(Y )♡ → Lisse(X)♡ is fully faithful with essential image as those local systems that
are constant along fibers.

3. The above generalizes to perverse sheaves as well.

7.2 Digression

Checking the following proposition:

Proposition 4. PN is simply connected over algebraically closed field k = k̄.

Here, being simply connected means πét1 (PN ) ≃ ∗, or, Lisse(PN )♡ ≃ Vect♡k .

Proof. First, we prove for N = 1.

Claim 2. If f : Y → P1 is finite étale map and Y is connected, then f is an isomorphism.

Proof. By Riemann-Hurwitz formula,

deg(f) · χ(P1) = χ(Y )

holds. Now χ(P1) = 2 and χ(Y ) = 2 − 2gY , so we have LHS ≥ 2 and RHS ≤ 2. Therefore we must have
equality on both sides LHS = RHS = 2, so that deg f = 1 and f is an isomorphism.

The claim completes the proof for N = 1; it asserts that P1 allows no further étale covering maps.
For general N , we need two inputs from SGA I:

1. Künneth formula for proper varieties:

πét1
(
P1 × . . .× P1

)
= ∗.
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2. For smooth Y and Z ⊆ Y of codimension ≥ 2,

πét1 (Y \Z) ∼−→ πét1 (Y ).

As a corollary, we have:

Corollary 2. πét1 is a birational invariant for smooth proper varieties.

Since PN is birationally equivalent to
(
P1
)N

, we have πét1 (PN ) = ∗ as desired.

7.3 Multiplicative sheaves

Choose some L0 with degL0 >> 0. For all n,

χnσ = χn+N ·degL0
σ ⊗ χσ|⊗−NL0

.

Here, in the first equality, we used L0 to identify

BunnGm

∼−→ Bunn+degL0

Gm

∼−→ . . .
∼−→ Bunn+N ·degL0

Gm

We choose the minimal N such that n+N · degL0 > 2g − 2.
We want to express this a little scientifically!
Let A be a commutative group scheme (which will be Jac(X) in the future,) and e is the coefficient field

for our sheaves.

Definition 10. A multiplicative sheaf on A is a local system χ ∈ Lisse(A) with data

1∗χ ≃ e
m∗χ ≃ χ⊠ χ

where 1 : Spec k → A, m : A×A→ A are the unit map and multiplication, respectively. These isomorphisms
should satisfy various “obvious” axioms:

1. they are compatible morphisms;

2. the second isomorphism is Z/2-equivariant;

3. they satisfy the cocycle condition on A3.

Remark 15. The isomorphism m∗χ ≃ χ⊠χ is analogous to the property of characters, in the sense that on
the fiberwise level we have χab ≃ χa ⊗ χb. (Note that the axioms force χ to have rank 1.)

Example 12. Consider a finite covering of A given as:

0→ Γ→ Ã→ A→ 0

with finite group Γ and a commutative group scheme Ã, together with a character Γ→ e×. (A good example
is (−)n : Gm → Gm with Γ ≃ Z/n.) Then we get

πét1 (A)
classifying cover−−−−−−−−−−→ Γ→ e×

which gives a rank 1 local system χ on A; it will be multiplicative.

We want to establish the following correspondence:

{Multiplicative sheaves on BunGm
} ∼−→ {Rank 1 local systems on X}
χ 7→ AJ∗(χ).

Choose x0 ∈ X(k) for convenience to get

BunGm
≃ BGm × Jac(X)× Z.
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Claim 3. There is isomorphism

{Multiplicative sheaves on BunGm
} ≃ {Multiplicative sheaves on JacX} × {Lines}

that maps a multiplicative sheaf χ on BunGm
to

1. χJac, the multiplicative sheaf on Jac(X) given by restriction of χ along Jac(X)→ BunGm
;

2. and the line (1-dimensional e-vector space) given by tanking fiber on O(x0).

Here, the point O(x0) ∈ BunGm ≃ BGm × Jac(X)× Z can be interpreted as (unit, unit, 1). Also:{
Multiplicative sheaves on

JacX

}
≃
{
Rank 1 local system χ on Jac(X)

with isomorphism 0∗(χ) ≃ e

}
Proof. Write A = Jac(X). The LHS is equivalent to a map πét1 (A) → e× such that the following diagram
commutes:

πét1 (A) e×

πét1 (A)× πét1 (A) e× × e×
m mult

and the RHS is equivalent to a map πét1 (A) → e×. Now the claim follows from the Künneth formula and
Eckmann-Hilton argument.

7.4 Hecke eigensheaves

For each n ≥ 0, define αn : SymnX × BunGm
→ BunGm

as αn(D,L) = LD. These are compatible with
summation of divisors SymnX × SymmX → Symm+nX, i.e. the following diagram commutes:

SymnX × SymmX × BunGm SymnX × BunGm

Symm+nX × BunGm
BunGm

.

αm

αn

αm+n

Definition 11. Given a rank 1 local system σ on X, a Hecke eigensheaf on BunGm with eigenvalue σ is a
sheaf F on BunGm equipped with isomorphisms

α∗nF ≃ σ(n) ⊠ F

for each n ≥ 0, which satisfy obvious compatibility conditions:

1. For n = 0, it gives the identity isomorphism;

2. For n,m ≥ 0, the isomorphisms are compatible with maps SymnX × SymmX → Symm+nX and
pullbacks σ(m+n) 7→ σ(n) ⊠ σ(m) in evident ways.

Example 13. For n = 1, the isomorphism induced by α∗1F ≃ σ(1) ⊠ F on the fiber over x ∈ X and
L ∈ BunGm

reads

F|Lx
≃ σx ⊗F|L.

Note that this definition of Hecke eigensheaves makes sense for sheaves defined only on
⊔
n≥N BunnGm

for
some N : we can use

SymnX × SymmX → Bunn−mGm

that maps (D1, D2) 7→ O(D1 −D2). Following Hecke property, the restriction of F along this map is

F|OX
⊗ σ(n) ⊠

(
σ(m)

)−1
.
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In this regard, we have the following:{
Hecke eigensheaves for σ

on BunGm

}
≃
{
Hecke eigensheaves for σ

on
⊔
n≥N BunnGm

}
.

Essentially, we only need data on a single BunnGm
together with an identification with some other BunmGm

.

Definition 12. A normalized Hecke eigensheaf on BunnGm
is one with extra data of an isomorphism F|OX

≃
e.

Hence we are to establish the following correspondences:

{
Multiplicative sheaves

on BunGm

}  Rank 1 local systems σ
+ Normalized Hecke eigensheaves

on BunGm


{
Rank 1 local systems

on X

}
∼

∼
AJ∗ ∼
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8 Back to Fq: 30/09/2025

Scribe: Michael Horzepa
The theme of this lecture is trying to gain arithmetic information out of geometric information, and the

workhorse for this will be the Lang isogeny. We will first introduce some necessary construction before we
state and give a basic proof of Lang’s theorem, then we will move onto some applications.

8.1 Lang Isogeny

Begin with a group scheme H over Fq. Then there exists a canonical finite subgroup H(Fq) ⊆ H by taking
the Fq points of H. Any algebraist would then naturally take the quotient of H by this subgroup, leading to
the question:

Question: What is H/H(Fq)?
Answer: H if H is connected.
Counterexample: If H is discrete (say a finite group considered as a group scheme over Fq), then this

quotient can become trivial, or more generally create a distinct quotient group.
To see this, we begin with some constructions: the absolute and geometric Frobenius. For the former, let

us begin with S = SpecA for some finite Fq algebra A. Then we can produce a natural Frobenius map on A
via

A→ A f 7→ fq

This then produces a map

φ : S → S

By Functoriality this generalizes to any scheme over SpecFq, and we call this map the “Absolute Frobe-
nius”.

Remark 16. If S is a scheme over Fq, then given s ∈ S(B) for some algebra B/Fq we see that φ(s) will
give the image under the qth power map. Furthermore, using φ on B, we induce a map

S(B)→ S(B)

Now we would like to introduce a variant of this Frobenius map, and to start we need S0/Fq a scheme
with base change S/Fq. Then we define the “Geometric Frobenius” via the morphsim of schemes over Fq
given by:

ΦS = φS0
× idFq

: S0 ×Fq
Fq → S0 ×Fq

Fq
Example 14. Let S0 = {y2 = x3 + λ} ∈ A2

Fq
and S = {y2 = x3 + λ} ∈ A2

Fq
, where λ ∈ Fq. Then

ΦS(x, y) = (xq, yq)

Both of these maps will be major players, and a motto to take forward is that the “absolute Frobenius is
great, geometric (Frobenius) is even better”. Now with these defined, we return back to dealing with H0/Fq
a group scheme with H/Fq a base change.

Definition 13. The Lang Isogeny is either of the following two maps:

H0
L−→ H0 h 7→ hφ(h)−1

H
L−→ H h 7→ hΦH(h)−1

We notice that this is functorial, and hence is a group homomorphism. Furthermore, for any point
h ∈ H0(Fq), we see that since points in Fq are fixed by the Frobenius, this means φ(h) = h and L(h) = 1.
More generally, if we consider any element γ ∈ H, we see:

L(γh) = γhΦH(h)−1ΦH(γ)−1 = γΦH(γ)−1 = L(γ)
and hence L is invariant on the cosets of H0(Fq). We can now come to our theorem:
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Theorem 9. (Lang’s Theorem) If H0 is connected, then L induces an isomorphism of left H0 space

H0/H0(Fq)
≃−→ H0

To prove this theorem, we quickly need to address the left action of H0 on itself. This action will be
called “Frobenius conjugation” and acts via:

h ∗ γ = hγφ(h)−1

With this in hand, the following lemma will for the most part immediately imply the theorem:

Lemma 2. Every orbit of this action is open

Proof. Let γ ∈ H0, and build the map H0 → H0 via h 7→ h ∗ γ. This gives an isomorphism of the tangent
spaces because φ has 0-derivative, which proves the lemma.

Now to prove Lang’s theorem:

Proof. If H0 is connected, then the lemma implies that there is exactly 1 H0-orbit of this action, or put
another way, that this action is transitive. Thus we have

H0/ Stab(1)
≃−→ H0

The proof then finishes by realizing that Stab(1) is exactly H0(Fq)

Let us give a few brief examples:

Example 15. For the most trivial example, consider A1
Fq

or A1
Fq

thought of us as Ga, the Lang isogeny is

given by:

L : t 7→ t− tq

Both are infinite in any sense of the word, and by quotienting by this finite discrete set, they remain
unchanged.

Remark 17. Given an algebra K/Fq and λ ∈ K, by setting K ′ = K[t]/(t−tq−λ), we induce an Artin-Scheier
cover through the Lang isogeny in the following way:

SpecK ′ A1

SpecK A1

L

Example 16. This is the most trivial example. Let us consider L : Gm → Gm. This acts via t 7→ tq−1.
This is an étale cover because q − 1 is prime to p, and hence via the theory of deck transformations we get
associated Galois group

Hq−1 = F×q = Gm(Fq)

8.2 Applications

Let us run through several applications of this theorem:

Example 17. A corollary of Lang’s theorem is the following:

Corollary 3. If H0 is connected, then any H0-torsor over SpecFq is trivial. Here we have H0 ↷ P →
SpecFq. Then P |Fq

≃ H in a manner compatible with the action, which also is true if and only if P (Fq) ̸= ∅.
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Proof. We know ∃p ∈ P (Fq) by assumption. Apply ΦP (p) = h · p for some h ∈ H(Fq). Then by Lang there
exists γ ∈ H such that γ−1ΦH(γ) = h. Taking then pnew = γ · p, we get

ΦH(pnew) = ΦH(γ) · ΦH(p) (15)

= (γh−1)(hp) = γp = pnew (16)

This then implies pnew ∈ P (Fq), so we are done (using the comment about the equivalent condition).

Example 18. Now we return to a smooth geometrically connected curve X0/Fq. Then we Lang implies that
there exists a divisor D of degree 1 on X0. To see this, let H0 = Pic0 ↷ P = Pic1. This then implies the
existence of a line bundle of degree 1 trivialized on some U ⊆ X0, which gives rise to our divisor.

Exercise 2. As an alternative proof, use the Weil bound to deduce this same conclusion.

Example 19. Lang provides a way to show that every finite dimensional division algebra D/Fq is commu-
tative.

Proof. Without loss of generality, assume D is central over Fq of rank n. Then the result follows by letting
H0 = PGLn = AutAlg(Mn) and P = {D ≃M\}, whereMn is the matrix algebra.

Example 20. Let G be a connected reductive group scheme over Fq. Then we can construct the flag variety

FℓG = {B ⊂ G Borel}

By the general theory G ↷ FℓG transitively via conjugation. Using Lang we can then deduce that we
actually have some B ⊂ G which is defined over Fq.

Example 21. For the last example, let p ̸= 2. Then given a quadratic form q = {
∑n
i=1 aix

2
i |ai ̸= 0,

∏
ai ∈

(F×q )2}, then q is equivalent to
∑
y2i up to a choice of coordinates.

Proof. This follows from the equivalence{
Non-deg. rank n quad.

forms w/ disc. in k×/(k×)2

}
↔ {SOn − torsors}

With the latter being trivial, the result follows.

From all this discussion, what we really need is for our group scheme H0/Fq, we get a canonical map (and
further a group homomorphism)

πèt1 (H)↠ H(Fq)

which is encoded by the connected cover H0
L−→ H0. One might recall this is a similar sort of induced

map that comes from regular topological fundamental groups and connected covers.

Remark 18. We can see Z/(n) ↷ Fqn by t → tq. Then this implies Z/(n) ↷ SpecFqn → SpecFq is a
nontrivial Z/(n)-torsor.
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9 GCFT via Frobenius: 02/10/2025

Scribe: Vladyslav Zveryk

9.1 Recap: Frobenius and Rational Points

Let Y0 be a variety defined over a finite field Fq. Let Y = Y0 ×Spec Fq Spec F̄q be its base change to the
algebraic closure. The geometric Frobenius is the morphism Φ : Y → Y which is the base change of the
map om Y0 which is identity on the topological space and the q-th power map on the structure sheaf. For an
affine variety Y0 = SpecFq[x1, . . . , xn]/(fi), the Frobenius acts on coordinates as Φ(y1, . . . , yn) = (yq1, . . . , y

q
n).

This setup leads to a fundamental dictionary:{
Arithmetic geometry of Y0

over Fq

}
←→

{
Geometry of Y over F̄q

together with the Frobenius Φ

}
.

The set of Fq-rational points of Y0, denoted Y0(Fq), can be realized as the set of fixed points of the
Frobenius map on Y :

Y0(Fq) = Y Φ(Fq).

Geometrically, the fixed points are the intersection of the graph of the Frobenius Graph(Φ) with the diagonal
morphism ∆ inside the product space Y × Y .

Y Φ Y

Y Y × Y .

Graph(Φ)

∆

Note that Y Φ is a finite scheme over Fq whose Fq-points are naturally identified with the Fq-points of Y0.

Example 22. Let Y0 = A1
Fq
. Then Y = A1

F̄q
= Spec F̄q[x]. The fixed points are given by the spectrum of the

ring:

(A1
F̄q
)Φ = Spec

(
F̄q[x]⊗F̄q

F̄q[y]
(x− y, xq − y)

)
∼= Spec

(
F̄q[y]
yq − y

)
Since yq − y =

∏
a∈Fq

(y − a), this corresponds to the disjoint union of points for each element of Fq:

Spec

∏
a∈Fq

F̄q[y]
(y − a)

 ∼= ∐
a∈Fq

Spec(F̄q) ∼= A1(Fq)

Remark 19 (The case of stacks). This principle extends to algebraic stacks. Let H0 be an algebraic group
over Fq, and let H = H0 ×Fq

F̄q. Consider the classifying stack Y0 = BH0 = [∗/H0], whose base change is
Y = BH = [∗/H]. The Fq-points of the stack, (BH0)(Fq), correspond to isomorphism classes of H0-torsors
over Spec(Fq).

The fixed-point stack Y Φ can be described in terms of Φ-conjugacy classes on the group H. We have

Y Φ = BH ×B(H×H) BH = H∆\H ×H/ΦH = H/ΦH,

where ∆ is the diagonal action and the Φ-action is given by g 7→ hgΦ(h)−1 for g, h ∈ H(F̄q).
A key result discussed last time is that every orbit under this Φ-conjugacy action is open. Therefore, if

H is a connected group, there is a unique Φ-conjugacy class. In this case,

Y Φ = H/ΦH = [∗/H0(Fq)] = B(H0(Fq))

because H0(Fq) is the stabilizer of the identity element under the Φ-conjugacy action. More concretely, we
have a fiber product diagram:
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H ∗

H B(H0(Fq)) ,

L

which makes L an H0(Fq)-torsor.
This implies that there is a unique H0-torsor over Spec(Fq) up to isomorphism. The group of automor-

phisms of this torsor is H0(Fq).

9.2 Application to Geometric Class Field Theory

Let X0 be a smooth, geometrically connected projective curve over Fq, and let X = X0 ×Fq
F̄q. Geometric

class field theory studies the abelianization of the Weil group of X0. The Weil group WX0
is a subgroup of

the arithmetic étale fundamental group πét
1 (X0) that fits into the following short exact sequence:

1 −→ πét
1 (X) −→WX0

−→ Z −→ 0, (17)

where πét
1 (X) is the geometric fundamental group ofX and the Z is generated by the Frobenius automorphism.

The main goal of geometric class field theory is to provide a geometric description of the abelianization
of the Weil group, W ab

X0
. The fundamental isomorphism is:

W ab
X0
∼= Pic(X0)

compatible with W ab
X0
→ Z and the degree map Pic(X0)→ Z.

If the curve X0 has an Fq-rational point, say x0 ∈ X0(Fq), this provides additional structure. The
existence of x0 gives a section Spec(Fq)→ X0, which induces a map

Z =WSpec(Fq) →WX0

splitting the sequence (17):
WX0

∼= πét
1 (X)⋊ Z

Similarly, the Picard group decomposes. The degree map deg : Pic(X0) → Z has a section given by x0,
leading to a decomposition:

Pic(X0) ∼= Pic0(X0)× Z ∼= Jac(X0)(Fq)× Z.

9.3 Frobenius Action and the Reciprocity Map

9.3.1 Frobenius Action on the Fundamental Group

One question one could ask is how does Z act on the geometric fundamental group πét
1 (X) in the semidirect

product decomposition of WX0 . It turns out that this action is given by a canonical action of the geometric
Frobenius Φ on πét

1 (X). An Fq-rational point x0 ∈ X0(Fq) is fixed by Φ. This gives a pointed morphism
Φ : (X,x0)→ (X,x0), which in turn induces a group automorphism:

Φ∗ : π
ét
1 (X,x0)→ πét

1 (X,x0)

Proposition 5. Let F := Φ∗.

1. The map F is an isomorphism.

2. The action of F on πét
1 (X) coincides (up to a sign) with the conjugation action induced by the generator

of Z in the semidirect product decomposition WX0
∼= πét

1 (X)⋊ Z.

Abelianizing the sequence (17) and taking coinvariants under the action of F leads to the short exact
sequence:

1 −→ (πét
1 (X)ab)F −→W ab

X0
−→ Z −→ 0.

Remark 20. The group of coinvariants (πét
1 (X)ab)F is finite. This follows from the Weil conjectures, which

imply that for the action of F on H1(X,Ql), the eigenvalue 1 does not occur. This ensures that the cokernel
of the map (F − 1) on H1(X,Ql) is trivial, which implies the finiteness of the coinvariants on H1(X,Zl) ∼=
πét
1 (X)ab ⊗ Zl.
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9.3.2 Construction of the Reciprocity Map

We aim to construct the isomorphism W ab
X0

∼= Jac(X0)(Fq) × Z. The map to Z is simply the canonical
projection from the Weil group. The non-trivial part is constructing the map to the Jacobian.

W ab
X0
−→ Jac(X0)(Fq)

This map arises from the Abel-Jacobi map AJx0
: X → Jac(X), which is functorial and induces a map

WX0
→WJac on Weil groups.

The rational points of the Jacobian can be described using the Lang isogeny:

L : Jac(X) −→ Jac(X)

y 7−→ Φ(y)− y.

The kernel of this isogeny is precisely the group of rational points, ker(L) = Jac(X)(Fq) = Jac(X0)(Fq),
and the Lang isogeny is an étale map. Therefore, it induces a map WJac(X) → Jac(X)(Fq). The overall
construction can be summarized by the following diagram:

W ab
X0

W ab
Jac(X) Jac(X0)(Fq)

Z .

L
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10 Lang Isogeny: 7/10/2025

Scribe: Minghan Sun

10.1 Universality of the Lang Isogeny

Theorem 10 (universality of Lang Isogeny). Suppose A0, B0 are commutative connected algebraic groups
over Fq. Suppose we are given a short exact sequence

0→ Γ→ B0
π−→ A0 → 0 (18)

where Γ is a discrete finite group. Then there exists a unique factorization of the above short exact sequence,
i.e. a unique map α : A0 → B0 such that π ◦ α = LA0

.

Remark 21. In other words, theorem 10 says that the universal finite (étale) cover of A0 by an algebraic

group such that the kernel of the cover is discrete is the cover A0

LA0−−−→ A0.

Remark 22. In the statement of theorem 10, by a “discrete” finite group Γ, we mean a finite group Γ with
no extra algebraic geometry, i.e. a finite group Γ which is isomorphic to a disjoint union of copies of SpecFq.

Example 23. Consider the map f : Gm,Fq
→ Gm,Fq

given by f(t) = tk for some k. When (k, q) = 1, f is a
finite étale cover of Gm,Fq .

We have a short exact sequence

1→ µk → Gm,Fq

f−→ Gm,Fq
→ 1. (19)

It is a fact that µk is discrete in the sense of remark 22 if and only if α∨µk(Fq) = k, which happens if and
only if k = q − 1. When k = q − 1, µk equals F×q .

proof of theorem 10. We have a diagram

0 Γ B0 A0 0

0 B0(Fq) B0 B0 0.

π

α

LB0

(20)

Here we have an inclusion Γ ↪→ B0(Fq) because Γ is discrete. Denoted by α the induced map A0 → B0. We
will show that π ◦ α = LA0 .

By construction, it is clear that απ = LB0 . So παπ = πLB0 . On the other hand, by functoriality, we have
LA0

π = πLB0
. So παπ = LA0

π. Since π is a surjective map, we have πα = LA0
, as desired.

Definition 14 (Galois cover). Suppose A0, B0 are algebraic groups over Fq and p : B0 → A0 is a cover. We
say p is a Galois cover if p is finite and étale and the group of Decke transformations of p is acts simply
transitively on the fibers of p.

Corollary 4. Suppose A0/Fq is an abelian variety. Suppose we have a connected Galois cover p : Y0 → A0

with the group of Decke transformations equal to Γ. Suppose y0 ∈ Y0 such that p(y0) = 0. Then the cover p
comes from the Lang Isogeny via the map A0(Fq)→ Γ.

Proof. We need to show that Y0 has a group structure which is compatible with the map p.
Let Y,A denote the base changes of Y0, A0 to Fq, respectively. We know that

{cover Y → A} ↔ {a homomorphism ρ : πét1 (A)→ Γ}. (21)

Since we are working over Fq, we have the Kunneth Formula. So the RHS of the correspondence above fits
into a diagram

πét1 (A) Γ

πét1 (A×A) πét1 (A)× πét1 (A) Γ× Γ.

ρ

add∗

∼=
sum sum (22)
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Unwinding what the diagram means on the LHS of the above correspondence, we see that Y has a group
structure compatible with the map Y → A.

To finish the proof, we notice that we can define the desired group structure on Y0 (compatible with p)
by Galois descent.

Remark 23. We already know that A0

LA0−−−→ A0 is a Galois cover of A0 with group of Decke transformations
equal to A0(Fq). corollary 4 says that this cover of A0 is the universal example of a Galois cover of A0 with
a finite discrete group of Decke transformations.

Suppose Z0/Fq is geometrically connected and let Z = Z0|Fq
. Recall from the previous lecture that we

have a short exact sequence
1→ πét1 (Z)→ πét1 (Z0)→ πét1 (Fq) = Ẑ→ 0. (23)

If we choose a point z0 ∈ Z0(Fq), then we get a section πét1 (Fq) = Ẑ→ πét1 (Z0). As a result, we have

πét1 (Z0) = Ẑ ⋉ πét1 (Z). (24)

This gives us an automorphism F of πét1 (Z) and we let πét1 (Z)F denote its group of covariants.

Theorem 11. Notation as above. Then the data of a Γ-cover p : Y0 → Z0 (Γ discrete and finite) plus the
data of a point y0 ∈ Y0(Fq) with p(y0) = z0 is equivalent to the data of a homomorphism πét1 (Z)F → Γ.

Proof. We know that{
A Γ-cover p : Y0 → Z0

plus a point y0 ∈ Y0(Fq) lying over z0

}
↔ {a homomorphism πét1 (Z0, z0)→ Γ}. (25)

Since we know that πét1 (Z0, z0) = Ẑ ⋉ πét1 (Z), these are also equivalent to the data of a homomorphism

Ẑ ⋉ πét1 (Z)→ Γ.
If we require the point y0 ∈ Y0(Fq) to be Fq-rational, we get a correspondence{

A Γ-cover p : Y0 → Z0

plus a point y0 ∈ Y0(Fq) lying over z0

}
↔
{
a homomorphism Ẑ ⋉ πét1 (Z)→ Γ

trivial on Ẑ

}
. (26)

But we also know that{
a homomorphism Ẑ ⋉ πét1 (Z)→ Γ

trivial on Ẑ

}
↔ {a homomorphism πét1 (Z)F → Γ}, (27)

finishing the proof.

Corollary 5. Suppose A0 is an abelian variety over Fq. Then

πét1 (A)F = A0(Fq). (28)

Proof. Corollary of previous results.

10.2 Application to CFT

Recall our setting from the last lecture. We let X0 be a smooth, projective, and geometrically connected
algebraic curve over Fq and X = X0|Fq

. We have a short exact sequence

1→ πét1 (X)→WX0
→ Z→ 0. (29)

Choosing some x0 ∈ X0(Fq), we get a splitting Z→WX0
of the above short exact sequence. As a result, we

can write
WX0

= Z ⋉ πét1 (X), (30)

and so we get an automorphism F of πét1 (X).
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Abelianize the short exact sequence above and taking F -coinvariants, we get a short exact sequence

1→ πét1 (X)abF →W ab
X0
→ Z→ 0 (31)

along with a section Z→W ab
X0

. As a result, we have

W ab
X0

= Z× πét1 (X)abF . (32)

Also, from Geometric CFT, we have

πét1 (X)ab = πét1 (Jac(X)). (33)

Since Jac(X) is an abelian variety, by corollary 5, we have

πét1 (Jac(X))F = Jac(X)(Fq). (34)

To summarize, we have shown that

WX0
= Z× Jac(X)(Fq), (35)

which is what we wanted to show.
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11 Modular forms: 09/10/2025

Scribe: Zachary Carlini

11.1 Motivation from Modular Forms

For a more detailed treatment of modular forms, see [Ser73], [DS05], etc...
“Every human being should read Serre’s A Course in Arithmetic” - Sam Raskin
The theory of modular forms is not strictly neccessary for us, but it will provide some helpful intuition

and motivation.
By a class vote, we will start with the more concrete definition of modular forms, so we will view them

as certain functions on the upper half plane H = {τ ∈ C : ℑ(τ) > 0}.

Definition 15 (Holomorphic Modular Forms of Level 1, no Nebentypus). A modular form of weight k is a
holomorphic function f : H→ C satisfying the following properties:

• (Modularity) For all

(
a b
c d

)
in SL2(Z) and τ ∈ H,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).

• (Growth Condition) For every λ > 0, f is bounded on the region {τ ∈ H : im(τ) > λ}.

Remark 24. If f is a modular form of weight k, we must have f(τ) = f
(
−τ+0
0+−1

)
= (−1)kf(τ), so for f to

be nonzero, k must be even.

Remark 25. If f is any modular form, then f
(
τ+1
0τ+1

)
= f(τ), so f is periodic. The quotient of H by the

Z action determined by τ 7→ τ + 1 is D◦ = {z ∈ C : 0 < ∥z∥ < 1}, where the quotient map is realized by the

exponential map H τ 7→e2πiτ

−−−−−→ D◦. Therefore, any modular form factors through a function D◦ → C, which
by abuse of notation we will also denote by f . To distinguish these two functions, we will always denote the
coordinate on D◦ by q, whereas we will denote the coordinate on H by τ , so we will write: f(τ) = f(q), where
it is understood that τ ∈ H and q = e2πiτ ∈ D◦.

The growth condition in the definition of modular forms implies that any modular form f(q) extends to
a holomorphic function on D = {z ∈ C : ∥z∥ < 1}, so we may write:

f(q) =
∑
n≥0

anq
n

for some coefficients an ∈ C. This is called the Fourier expansion or the q-expansion of the modular form f .

Remark 26. If f is a modular form of weight k, then f
(
1
τ

)
= τkf(τ). In terms of q-expansions, this means:

τk
∞∑
n=0

ane
2πinτ =

∞∑
n=0

ane
− 2πin

τ

which is ugly and complicated looking. The takeaway is that modularity is not easy to check from the perspec-
tive of q-expansions.

Example 24 (Eisenstein Series). For k ≥ 2,

G2k(τ) =
∑

(m,n)∈Z2 \0

1

(mτ + n)2k

is a weight 2k modular form. This is called the Eisenstein series of weight 2k.
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Example 25 (Ramanujan ∆ Function, a.k.a Ramnujan Discriminant Function).

∆(q) = q
∏

(1− qn)24 = η(τ)24

is modular of weight 12. What does this function do? There is a simpler identity:∏
n

(1 + qn) =
∑
n

anq
n,

where an is the number of ways to write n as a sum of distinct positive integers. If we change our generating
function to

∏
n(1 + qn)24, then the coefficients in the expansion count the number of ways to write n as a

sum of positive integers, where we allow each positive integer to be repeated at most 24 times, and we weight
each expression by a combinatorial term that counts the number of ways we could have selected those copies
of the summands out of the 24 available. Finally, the coefficients in the expansion of our actual ∆(q), which
is given by q

∏
n(1− qn)24, count the (weighted) number of ways to write n− 1 as a sum of positive integers,

where we allow a summand to be repeated at most 24 times, and we attach a sign to the weights which depends
on the multiplicity of each summand.

We will denote by Mk the set of holomorphic modular forms of weight k, and we will denote by Sk the
set of cuspidal modular forms of weight k. A modular form f(q) =

∑∞
n=0 anq

n is called cuspidal if a0 = 0,
or, equivalently, if f(q) vanishes at q = 0 (the cusp).

Here are some lovely, very special facts that are specific to the holomorphic level 1 case:

•
⊕

k∈ZMk
∼= C[G4, G6] as a graded ring, where G4 has degree 4 and G6 has degree 6.

• dimSk = dimMk − 1 whenever Mk is nonzero. In particular, dimS12 = 1, so it is spanned by ∆.

The weight k encodes something about the Archimedean place, so when we go to function fields, it won’t
appear.

We will now introduce a nicer, more abstract definition of modular forms.

Definition 16 (Abstract). A modular form of weight 2k is an assignment of Λ ⊂ L 7→ f(Λ, L) ∈ L⊗−k for
L a complex line and Λ ⊂ L a lattice such that f is holomorphic and bounded in a suitable sense (e.g. the
sense that makes this definition equivalent to the concrete one).

Dictionary: If f is an abstract modular form of weight k, then given τ ∈ H, we can plug L = C and
Λ = Z⊕τ Z into f to get a number, so this defines a function H → C which will be a concrete modular
form of weight k. Conversely, if f is a concrete modular form of weight k, then given Λ ⊂ L, choose a basis
Λ = spanZ(ω1, ω2) with ω1/ω2 ∈ H (note that for any basis ω1, ω2, exactly one of ω1/ω2 and ω2/ω1 is in H,
so we can choose a basis ω1, ω2 arbitrarily and then swap them if we need to in order to get ω1/ω2 ∈ H).
Then we can use ω2 as a basis for L, so there is a unique linear functional αω1,ω2 : L⊗k → C characterized
by αω1,ω2

(
t.ω⊗k2

)
= tf(ω1/ω2) for t ∈ C. If we had chosen η1, η2 instead of ω1, ω2 as our basis, we could

similarly produced a linear functional αη1,η2 : L⊗−k → C characterized by αη1,η2
(
t.η⊗k2

)
= tf(η1/η2). There

is a unique matrix

(
a b
c d

)
∈ SL2(Z) with aω1 + bω2 = η1 and cω1 + bω2 = η2, and by the modularity of f ,

f

(
η2
η1

)
= f

(
aω1 + bω2

cω1 + dω2

)
= (c(ω1/ω2) + d)

k
f(ω1/ω2) =

(
η2
ω2

)k
f(ω1/ω2).

In particular, for t ∈ C, we have:

αη1,η2
(
tη⊗k2

)
= tf(η1/η2) = t

(
η2
ω2

)k
f(ω1/ω2) =

(
η2
ω2

)k
αω1,ω2

(
tω⊗k2

)
= αω1,ω2

(
tη⊗k2

)
,

so αη1,η2 = αω1,ω2
. Therefore, αω1,ω2

does not actually depend on the choice of ω1, ω2, so this procedure
gives us a canonical assignment Λ ⊂ L 7→ Λ⊗−k, and this is an abstract modular form.
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Remark 27. A complex line with a lattice corresponds to an elliptic curve over C. Given Λ ⊂ L, we
associate the elliptic curve L/Λ with basepoint the projection of 0 ∈ L. Conversely, given an elliptic curve E
with basepoint 0, we can take L = T0E and we can take Λ to be the kernel of the exponential map from T0E
to E.

Here is a group theoretic perspective on the coincidence of the abstract and concrete definitions of mod-
ular forms: since SL2(R) acts transitively on H, and the stabilizer of a point is conjugate to SO2(R) (note that
SO2(R) = S1 ⊂ C×), we can writeH ∼= SL2(R)/SO2(R). Then we have SL2(Z)\H ∼= SL2(Z)\ SL2(R)/ SO2(R).

There is also a transitive action of GL2(R) on the space of lattices for a given complex line L, and
the stabilizer of a point under this action is conjugate to GL2(Z). The automorphism group of the line L
is C×, so a function on pairs Λ ⊂ L which is invariant under simultaneous isomorphism is a function on
GL2(Z)\GL2(R)/C×. But

GL2(Z)\GL2(R)/C× ∼= SL2(Z)\
(
{±1}\GL2(R)/R×>0

)
/ SO2(R) ∼= SL2(Z)\SL2(R)/ SO2(R),

which gives the equivalence of the two definitions of modular forms.
Recall that for τ ∈ H, we defined the Eisenstein series G2k(τ) as the concrete modular form given by the

formula:

G2k(τ) =
∑

(m,n)∈Z2 \0

1

(mτ + n)2k
(36)

I claim that under our dictionary, this corresponds to the abstract modular form given by:

G2k(Λ ⊂ l) =
∑
λ∈Λ\0

λ⊗−2k ∈ L⊗−2k. (37)

To check this, we need to plug Z⊕τ Z ⊂ C into our abstract modular form and compute:

G2k(Z⊕τ Z ⊂ C) =
∑

λ∈(Z⊕τ Z)\{0}

λ−2k =
∑

(m,n)∈Z2 \0

1

(mτ + n)2k
.

Note that equation (37) immediately implies that G2k(τ), viewed as a function on H, transforms correctly
under the SL2(Z) action, while equation (36) immediately implies that G2k(τ) is holomorphic and satisfies
the growth condition.
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12 Hecke operators: 14/10/2025

Scribe: Joakim Færgeman

12.1 Hecke Theory

12.1.1

We have seen that modular forms can be regarded as functions

f : (Λ, L) 7→ f(Λ, L) ∈ L−k,

where L is a complex vector space of dimension 1, and Λ ⊂ L is a lattice.
For each integer n ≥ 1, we introduce the operator

Tn :Mk →Mk, (Tnf)(Λ, L) = nk−1
∑

[Λ:Λ′]=n

f(Λ′, L).

Here, the sum runs over all subgroups of Λ of index n (which are automatically lattices). We call Tn the n’th
Hecke operator.

12.1.2

By direct inspection, we see that:

1. T1 = id.

2. Tn ◦ Tm = Tnm whenever gcd(n,m) = 1.

3. For any prime number p, we have

Tpn ◦ Tp = Tpn+1 + pk−1Tpn−1 .

Remark 28. The third identity is analogous to the following. Let V be a vector space of dimension two over
some field. Then:

(SymnV )⊗ V = Symn+1V ⊕ Symn−1V ⊗ Λ2V.

Remark 29. The Hecke operators preserve the subspace Sk of cusp forms.

A consequence of the above three identities is the following:

Corollary 6. The Tn’s commute.

Remark 30. The Tn’s are simultaneously diagonalizable. Indeed, by Corollary 6, it suffices to show that
each Tn is diagonalizable. This in turn follows from the fact that we have a Hermitian bilinear pairing called
the Petersson inner product:6

⟨·, ·⟩ :Mk × Sk → C

which is non-degenerate when restricted to Sk × Sk, and that Tn is self-adjoint with respect to this pairing.

Definition 17. A Hecke eigenform is an eigenvector f ∈Mk for the Tn’s. Note that it is sufficient to be an
eigenvector for Tp for each prime p.

6We will not define this inner product here, but the reader should feel free to look it up.
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Example 26. Recall the Eisenstein series of even weight k ≥ 4, written as a function on (Λ, L):

Gk(Λ, L) =
∑

0̸=λ∈Λ

λ−k ∈ L−k.

We claim that Gk is a Hecke eigenform. We check this directly. Let p be a prime number. Then:

(TpGk)(Λ, L) = pk−1
∑

[Λ:Λ′]=p

Gk(Λ
′, L) = pk−1

∑
[Λ:Λ′]=p

∑
0̸=λ∈Λ′

λ−k

We distinguish two cases:

• If λ ∈ pΛ, then λ is contained in any subgroup Λ′ of Λ of index p, since pΛ ⊂ Λ′. In this case, there
are exactly |P1(Fp)| = p+ 1 subgroups of Λ/pΛ ≃ (Z/pZ)2 of index p.

• If λ /∈ pΛ, then there is a unique Λ′ of index p containing λ. This is saying that there is a unique line
in Λ/pΛ ≃ (Z/pZ)2 containing the non-zero vector λ.

As such the above double sum becomes:

pk−1
( ∑
0̸=λ∈pΛ

(p+ 1)λ−k +
∑
λ/∈pΛ

λ−k
)
= pk−1

( ∑
0̸=λ∈pΛ

pλ−k +
∑

0̸=λ∈Λ

λ−k
)

pk−1
( ∑
0̸=λ∈Λ

p1−kλ−k +
∑

0̸=λ∈Λ

λ−k
)
= (1 + pk−1) ·Gk(Λ, L).

Example 27. From here, one can check that for all n ≥ 1:

TnGk = σk−1(n)Gk,

where σk(n) =
∑
d|n
dk.

12.2 Relationship to Fourier Coefficients

12.2.1

For the standard lattice Z2, we write e1 = (1, 0), e2 = (0, 1) ∈ Z2.

Lemma 3. Let Λ ⊂ Z2 be an index n subgroup. There exist unique integers (c, d) with d ≥ 1, d|n, 0 ≤ c < d
such that

Λ = SpanZ(de1, ce1 +
n

d
e2).

Proof. Since ne1 ∈ Λ, choose d|n minimal such that de1 ∈ Λ. Next, consider an element αe1 + βe2 ∈ Λ,
where x = α, β ∈ Z and β ≥ 1 is minimal. By adding multiples of de1 to x, we may assume that c := α
satisfies that 0 ≤ c < d.

We claim that β = n
d , which finishes the proof.

12.2.2

Recall that given τ in the upper half plane H, we may associate the lattice Z ⊕ Z · τ ⊂ C. Given d|n, and
0 ≤ c < d, we get the sublattice Z · d⊕ Z(nd τ + c) ⊂ Z⊕ Z · τ of index n.

Multiplication by d : C → C sends this lattice to Z ⊕ Z · ( nd2 τ + c
d ). Now we can write what the Hecke

operators do to modular forms when we consider the latter as functions on the upper half plane. Namely, we
get the formula:

Tnf(τ) = nk−1
∑

d|n,0≤c<d

f(
n

d2
τ +

c

d
)d−k.
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12.2.3

Next, we turn to the question of what Hecke operators do to Fourier coefficients. Recall that a modular form
(of level 1) has a q = e2πiτ -expansion:

f(q) =
∑
n≥0

an(f)q
n.

Note that:

Tnf(τ) = nk−1
∑
m≥0

∑
d|n,0≤c<d

am(f)e2πim( n
d2
τ+ c

d )d−k

= nk−1
∑
m≥0

∑
d|n

am(f) · e2πim
n
d2
τd−k

∑
0≤c<d

e2πim
c
d

Note that the sum
∑

0≤c<d
e2πim

c
d equals zero unless d|m, in which case it equals d. Replacing m by dm, we

get:

Tnf(τ) = nk−1
∑
m≥0

adm(f)
∑
d|n

e2πim
n
d τd1−k

= nk−1
∑
m≥0

(∑
d|n

d1−kadm(f)
)
e2πim

n
d τ

Example 28. Note that:

a0(Tnf) = nk−1
∑
d|n

d1−ka0(f) = a0(f) · σk−1(n).

Example 29.

a1(Tnf) = nk−1
∑

m≥0,d|n,mn=d

d1−kadm(f)

= nk−1 · n1−k · an(f) = an(f).

In the theory of automorphic forms, this is known as the ‘Casselman-Shalika formula’.

12.2.4

Recall that Hecke operators preserve cusp forms. Suppose know that f =
∑
n≥1

an(f)q
n is a cuspidal Hecke

eigenform. Then

Tnf = λnf =
∑
n≥1

λnan(f)q
n

for some λn ∈ C. By Example 29, we have

an(f) = λna1(f).

This also implies that a1(f) ̸= 0. Without loss of generality, we can rescale f to assume that a1(f) = 1 (in
which case we refer to f as a ‘normalized’ eigenform). In this case

an(f) = λn.

That is, the eigenvalue for Tn is the n’th Fourier coefficient.
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12.2.5

Let us apply this to the Ramanujan tau function. Recall that:

∆(q) = q ·
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

is the unique normalized cuspidal Hecke eigenform of weight 12. From the discussion in §12.2.4 and the
properties of Hecke operators listed in §12.1.2, we get:

1. τ(nm) = τ(n)τ(m) whenever gcd(n,m) = 1.

2. τ(pn)τ(p) = τ(pn+1) + p11τ(pn−1) for any prime p.
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13 What did Langlands Predict: 23/10/2025

Scribe: Michael Horzepa
Let us recall that what we have so far is the space of weight k holomorphic (cuspidal) modular forms

Mk(⊇ Sk) as well as the Hecke operators Tn which act on them. The Tn’s are simultaneously diagonalizable,
preserve the space of cusp forms, and each Tn ∈ C[{Tp}]p prime. We now want to expand upon what the
Langlands program actually predicts for these types of functions.

13.1 What do the Langlands conjectures say?

When trying to answer as to what the Langlands conjectures actually say, the answer will by nature be a
bit mysterious. When Langlands first started thinking about the ideas, they were just that: ideas and a
philosophy. But, in the USSR one could not speak of philosophy, so when Drinfeld gave his PhD dissertation,
he used the word conjectures and it has stuck ever since. Because of that, we will give only a flavor of the
answer in this particular set up.

Taking the Langlands philosophy as a sort of “religious belief”, there is supposed to be a topological
group, and in fact a pro-Lie group, LQ of Weil group flavor. The regular Weil group of Q is in fact too small
which mandates the existence of the Langlands group of Q. In the function field case F = Fq(X0), this group
takes on the role of WF for the most part. Then there should be an isomorphism

L∧Q ≃ GalQ
Where the left hand side is the profinite completion. There should also exist a map | · | : LQ → R>0 such

that for each prime p there should be a well defined up to conjugation Weil-Deligne map from Qp to LQ such
that the following diagram commutes:

WQp × something LQ

Z R>0

|·|

n 7→pn

There is also a map from the Weil group of WR ↪→ LQ, but we haven’t discussed this. The key takeaway
is that this offers some extension of Galois theory which is not purely algebraic, but rather also incorporates
an analytic flavor. Of course, class field theory should say there exists an isomorphism:

LabQ ≃ A×Q/Q
×

There is also an everywhere unramified version which looks like the following for each prime p:

LZ Z = {Frnp }

LQ

⊇

This LZ will also contain WR.

13.2 The Vague Picture

One should have the following vague picture in mind:

SpecFp SpecZ

SpecF1

Z LZ

π1(SpecFp) π1(SpecZ)

π1(SpecF1) = R>0

1 7→ Frp

|·|

17→p
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with the right side being induced by the left. Here F1 denotes the field with one element. The principle
here is described by:

{motives/Q} rep’ns of LQ which look alg.

{Varieties/Q}

H•univ

The idea is that every reasonable cohomology theory on varieties should factor through motives, and that
sufficiently nice “Galois” representations should come from motives. As an example, consider the following
which comes from the Tate motive Q(−1):

Q(−1) | · |(H) : LQ → R>0

H2(P1
Q)

We could also have a different map such as | · |
√
2, but this doesn’t come from a motive.

Note that the idea in some sense is:

{motives/Q} H•èt(−,Qℓ)−−−−−−−→
{

Qℓ-vector spaces w/ a
cts. action of GalQ

}
If we stick with the Qℓ coefficients then really this is generated by GalQ, but if the coefficients are in C,

then we instead use just LQ. Then very roughtly Langlands predicts a correspondence:{
automorphic forms

for G/Q

}
↔
{

LQ → Ǧ(C)
representations

}
Here Ǧ denotes the Langlands dual group which comes from swapping roots and dual roots. In this picture

the hope is that cuspidal forms should correspond to irreducible representations.

13.3 Basic Expectations

We have not yet discussed what exactly automorphic forms are, but we claim the modular forms we have
seen are actually automorphic forms for G = GL(2) = Ǧ. What’s really happening is a correspondence:

{f an eigenform of wt k} ↔
{
ρf : LQ → GL2(C)
det ρf = | · |k−1

}
So in the case of modular forms, we first recall that for a normalized eigenform Tpf = λpf for λ ∈ C.

We expect that λp = tr(ρf (Frp)). Let us consider this for the explicit eigenform examples of the Eisenstein
series G2k. Then these correspond to the representation

ρG2k
(g) =

(
1 0
0 |g|2k−1

)
Then if we take the trace at ρG2k

(p) =

(
1 0
0 p2k−1

)
, this exactly aligns with the eigenvalues for Tp we

calculated earlier.
Now imagine instead we started with a suitable irreducible 2-dimensional representation ρ of LQ (really this

should come from a motive IRL7). Then the belief is that there exists a unique cuspidal eigenform of weight k
that comes from this correspondence. Let’s try to reconstruct it via the q-expansion f = a0+a1q+a2q

2+ ....
For starters, by assumption a0 = 0 and a1 = 1. The for next coefficient, we should have a2 = tr(ρ(Fr2)),

and similarly for all other primes ap = tr(ρ(Frp)). We saw before that TpnTp = Tpn+1 + pk−1Tpn−1 (like

(Symn V )⊗V = Symn+1 V ⊕ (Symn−1 V )⊗∧2V for V 2 dimensional). Then this implies that for n ≥ 1 that

7in real life
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apn+1 = apn · ap − pk−1apn−1

Finally if we recall that for (n,m) = 1 we get amn = aman, then we actually have generated our entire
q-expansion.

Of course, this is all well and good to get an infinite series, but at no point in this process did we show
that the function we generated was actually modular. This shines light on what Taylor, Wiles, etc. did.
They actually went in and checked that the function f generated in this fashion was modular for ρ coming
from an (at least a certain class of) elliptic curves.
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14 Functions to Sheaves: 28/10/2025

Scribe: Soumik Ghosh
Aim: Geometrization
Recall the analogy for F a global field.

R ⊃ Z↔ AF ⊃ F

Modular forms are functions on SL2Z\H = SL2Z\SL2R/SO2R.
Let G be a reductive group (split/ defined over F ). In char 0, this is the same as connected affine algebraic

groups with semi-simple representation theory. Examples areGLn, SLn, PGLn, Sp2n, SOn, Spinn, G2, F4, E6, E7, E8.
We look at adelic points G(A) and consider G(F )\G(A)/K where K ⊂ A =

∏′
v Fv is the subgroup

K =
∏
Kv where Kv ⊂ G(Fv), for almost all v, Kv = G(Ov), for finite v, Kv ⊂ G(Ov) is open subgroup and

for v Archiemdian, Kv = maximal compact in G(Fv).
Morally: An automorphic form for G is a function ”of level K”

G(F )\G(A)/K → C

satisfying certain conditions (too complicated).
Fact: Modular forms of weight k ↔ automorphic forms for PGL2 for F = Q.
Let X0/Fq be a curve and F = Fq(X0). Set K =

∏
x∈X0 closedG(Ox)

Say X/k is a smooth projective variety.

Definition 18. BunG(X) is the stack defined by

Hom(S,BunG(X)) = {G-bundles on X × S}

Examples
G = GLn ↔ E rank n vector bundle. G = SLn ↔ E rank n vector bundle and ∧nE ∼= O G = PGLn ↔ E

rank n vector bundle upto tensoring by line bundles. G = On ↔ E rank n vector bundle with a non-degenerate
symmetric bi-linear form.

Example: X = Spec k, then BunG(pt) = BG = pt/G.
When X is a curve, we shall discuss the geometry of BunG in some detail.
Fact: BunG is an algebraic stack locally of finite type and there exists S → BunG smooth and surjective

locally of finite type.

Theorem 12 (Weil for GLn, folk-lore for general split G). X0/Fq as before, BunG = BunG(X0). Then we
have G(F )\G(A)/G(O) = BunG(Fq) canonically where O =

∏
Ox.

Example 30. G = Gm, then A×/O× =
⊕

x∈X0 closed. Z = {divisors on X0} and hence we get
F×\A×/O× = {line bundles L on X0}

Given a G-bundle P on X0, ∃U ̸= ϕ ⊂ X0 such that PG|U is trivial.
Step 1: We claim

G(A) = {G-bundles P on X0 with a trivialization on some non-empty open U ⊂ X0, τη and a

tivialization τx on Dx = SpecOx, x ∈ X0 closed}

To go from LHS to RHS, cover X0 by U and
∐
Dx an fpqc cover and then g is the gluing data for a

G-bundle trivial over U and each Dx.
Given an element of the RHS, we have PG|D0

x
where D0

x = SpecFx with two trivializations τη and
τx ⇐⇒ gx ∈ G(Fx) where gxτx = τη and note that gx ∈ G(Ox) ∀x ∈ U .

Step 2 :
From now on:
An automorphic form (everywhere un-ramified) means a function

BunG)(Fq)→ C
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Note that the fields are different, so not quite regular functions. So we use Grothendieck-Deligne Sheaves-
Functions dictionary.

Let Yo/Fq be a stack/scheme. So we have the geometric Frobenius ΦY : Y → Y and Y0(Fq) = Y Φ.
Recall Shv(Y ) → Q̄l-sheaves and Shvc(Y ) ⊂ Shv(Y ) is the sub-category of bounded complexes with

constructible cohomology =⇒ finite dimensional fibers.

Definition 19. A Weil sheaf on Y is a pair (F ∈ Shv(Y ), α : Φ∗F
∼=−→ F)

(F , α) is constructible ⇝ fF : Y (Fq) → Q̄l. So y ∈ Y (Fq) = Y Φ induces y∗F = Fy ← FΦ(y) = Fy and
this is a morphism in VectcQ̄l

. Taking the trace of this morphism gives fF (y) ∈ Q̄l.
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15 Sheaves-Functions Dictionary: 30/10/2025

Scribe: Youseong Lee

15.1 Sheaves–functions dictionary (cont’d)

Last time: Given a constructible Weil sheaf (F , α) on Y , we constructed a function fF : Y (Fq) → Qℓ via
“trace of Frobenius.”

Intuition with manifolds:

• Y → SpecFq is a fibration from a 3-manifold M to S1;

• the base-change YFq
= SpecFq×Spec Fq

Y can be viewed as the fiber M0 over the basepoint 0 ∈ S1,
which is a surface;

• a point y ∈ Y (Fq) is a section S1 →M .

In this 3-manifold analogue, the data of y∗F being a local system on S1 is equivalent to a vector space V
(over Qℓ) with automorphism T , and then we can calculate the trace tr(T ). This is what we are doing in
sheaf-function construction.

Remark 31. A Weil Lisse sheaf (σ, α) on Y is equivalent to a representation of WY (Weil group of Y ).
Indeed, we have the following equivalent data:

Lisse sheaf σ ⇔ ρ : π1(YFq
)→ GLn(Qℓ)

α : Φ∗σ ≃ σ ⇔ isomorphism ρ ≃ ρ ◦ Φ
⇔ g ∈ GLn(Qℓ) conjugating σ and σ ◦ Φ
⇔ Z⋉π1(YFq

) =WY → GLn(Qℓ)

where Φ : π1(YFq
)→ π1(YFq

) is the geometric Frobenius.

Remark 32. If we replace Z by Ẑ = π1(SpecFq), we get sheaves on YFq
. Therefore, sheaves on YFq

induces
Weil sheaves on YFq

.

Example 31. From the constant sheaf Qℓ,Y over Y (which is automatically a Weil sheaf,) we get the constant
function 1 over Y (Fq).

Example 32. For i : Z0 ↪→ Y0, the sheaf i∗Qℓ,Z0
gives the indicator function δZ(Fq) for Z(Fq) ⊆ Y (Fq).

Example 33. For A0/Fq a connected algebraic group, let χ : A0(Fq)→ Qℓ
×

be a character. Then we get a
rank 1 local system Lχ ∈ Lisse(A0) via the Lang isogeny:

πét1 (A0, 0)
L−→ A0(Fq)→ Qℓ

×
.

Exercise 3. Fun exercise: What is the corresponding function? χ or χ−1?

Applying the above construction:

Example 34. For ζp ∈ Qℓ
×

a root of unity, we get a character

χ : Fq
tr−→ Fp

x 7→ζxp−−−−→ Qℓ
×

and the corresponding sheaf Lχ is the Artin-Schreier (AS) local system on A1.

Example 35. From the character F×q ≃ Zq−1
ζq−1−−−→ Qℓ

×
, we get the Kummer local system on Gm.
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15.2 Grothendieck-Lefschetz trace formula

Big theorem:

Theorem 13 (Grothendieck-Lefschetz + ...). Let (F , α) be a constructible Weil sheaf. Then from α, the
Frobenius acts on the (compactly supported) cohomology

Frob ↷ C∗c (Y,F) ∈ VectcQℓ

where VectcQℓ
denotes the category of bounded complexes with finite dimensional cohomology (perfect com-

plexes.) Then, we have:

# := tr(Frob)
!!!
=

∑
y∈Y (Fq)

fF (y).

Here we mean the supertrace for tr.

Remark 33 (Definition of compactly supported cohomology). For open embeddings j : U ↪→ Y , we can define
j! : Shv(U)→ Shv(Y ), the direct image with compact support, as the left adjoint to j∗ : Shv(Y )→ Shv(U).
(Note: in this case, we have j! = j∗.)

Then choosing a compactification j : Y ↪→ Y (which is an open embedding,) we can define

C∗c (Y,F) := C∗(Y , j!F)

where C∗(Y ,−) = Hom(Qℓ,Y ,−). Indeed, this is independent of the choice of the compactification.
Of course, when Y is proper, there is no distinction betweeen C∗ and C∗c .

Example 36. Choosing F = Qℓ,Y , we have fF = 1, so that

#Y (Fq) = trace of Frob ↷ C∗c (Y ).

Example for P1:

Remark 34 (Warm-up). The map f : S1 → S1 given by z 7→ zn induces f∗ : H1(S
1) → H1(S

1) given by
n · (−) : Z→ Z. Here, H1(S

1) ≃ Z is given by a (noncanonical) choice of orientation on S1. Also, f induces
f∗ : H1(S1)→ H1(S1), which is also n · (−). (Surprisingly, transpose of 1× 1 matrix is itself !)

Exercise 4. For k = k, the map Gm,k
t 7→tn−−−→ Gm,k induces

n · (−) : H1(Gm,Zℓ)→ H1(Gm,Zℓ)

where H1(Gm,Zℓ) ≃ Zℓ noncanonically (similar to H1(S
1) ≃ Z.) It is same for H1. (cf. Riemann–Hilbert

formula.)

Corollary 7. The Frobenius map Gm,Fq

Φ−→ Gm,Fq
induces q · (−) on H1(Gm).

Exercise 5. There is canonical isomorphism H1(Gm) ≃ H2(P1) (cf. Mayer-Vietoris,) and ΦP1 acts as q ·(−)
on H2(P1).

Example 37. We have

C∗(P1) = Qℓ
⟲
id

⊕Qℓ[−2]
⟲
q

where the endomorphisms are the Frobenius action, so we have

trace = 1 + q = #P1(Fq).
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Example 38. Similarly,

C∗(Pn) = Qℓ
⟲
id

⊕ . . .⊕Qℓ[−2n]
⟲
qn

and we have

trace = 1 + q + . . .+ qn = #Pn(Fq).

Some noncompact cases:

Example 39. We have

C∗c (A
n) = Qℓ[−2n]

⟲
qn

via open embedding An ↪→ Pn. Of course, trace = qn = #An(Fq).

Remember compactly supported cohomology of Rn? (cf. Bott-Tu, Example 1.6(c))

Example 40. In similar ways,

C∗c (Pn) = Qℓ[−1]
⟲
id

⊕Qℓ[−2]
⟲
q

(For the degree 1 action, it comes from the point by excision. ) Now we are taking supertrace, so we should
be careful when dealing with the odd degrees:

trace = −1 + q = #Gm(Fq).

Idea for proving Grothendieck-Lefschetz. For simplicity, assume that Y is proper, we have Frobenius
Φ : Y → Y , and Y (Fq) = Y Φ.

Remark 35 (Lefschetz trace formula on usual cohomology). For compact (complex) manifold M , suppose
Φ : M → M has simple fixed points. That is, the diagonal ∆ ⊂ M ×M meets the Graph(Φ) ⊂ M ×M
transversally. Then the Lefschetz trace formula says that

MΦ = tr (Φ ↷ H∗(M)) .

Also note that this formula fails for noncompact manifolds, for example, when M = R1 and Φ is nonzero
translation.

Grothendieck found there exists some analogous trace formula. Roughly, Frob gives a contraction ap-
proaching to the fixed point.

An immediate generalization to relative version:

Remark 36. for θ : Y → Z over Fq and a constructible Weil sheaf (F , α) over Y , θ!F carries a Weil sheaf
structure on Z by base-change. Now we have:

fθ!F (z) =
∑

y ∈ Y (Fq)
θ(y) = z

fF (y)

for each z ∈ Z(Fq). It is really a pushforward of function via integration along fibers. (Note that we do not
worry about infinite sum because, for example, it is a sum over Fq-points.)

Exercise 6. Check Grothendieck-Lefschetz (without deep theory) in the following examples:

1. Y = A1, F = AS;

2. Y = Gm, F = Kummer;

3. Y = Gm, F = Kummer⊗AS|Gm
. (cf. in Deligne SGA 4.5.)
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16 Better2 Hecke Operators: 04/11/2025

Scribe: Max Steinberg
Question from Prof. Loseu on the previous lecture: there was something called Y on which the action

happened. What was Y ? Answer: Y is a scheme, not necessarily smooth, but quasicompact and finite type.

16.1 Where are we?

We said that, in some sense,

{unramified automorphic forms for G} ∼−→ {local systems on X}

(Somehow the left-hand side is pairs (G,F ) and the right-hand side is X ⊇ SpecF ). When F is Fq(X0):

{Qℓ-valued automorphic forms} = {BunG(Fq)→ Qℓ} ↔ {Weil local systems on X}

Then: we expect “geometric origins” for functions like Y (Fq)→ Qℓ. There should be some kind of “canonical
Weil sheaf” on Y that has more geometric origins that gives rise to f via sheaf-functions correspondence.

Summary: ∀X/k with k = k, ℓ ̸= char(k), for σ a GLn-local system on X (or Ǧ) we should get a ℓ-adic
sheaf on BunG Fσ ∈ Shv(BunG) a canonical sheaf. It should be so canonical that if X/Fq and σ ≃ Φ∗σ
a Weil structure, then we get Fσ ≃ FΦ∗σ that comes from the pullback along the geometric Frobenius on
BunG, i.e. a Weil structure on Fσ, which then gives us an automorphic form.

16.2 Hecke Symmetries

(Version 1)
Before: for every p prime, we had a corresponding operator Tp (and Tpn) acting on the space of modular
forms Mk.
Now: for every point x ∈ X, we get a Hecke operator Tx : Shv(BunPGL2

) → Shv(BunPGL2
) (and ditto for

GL2 and GLn).

Definition 20 (standard Hecke stack). The standard Hecke stack at x is

Hx

BunGLn
BunGLn

E=
←−
h E′=h⃗

Where Hx : {E , E ′ rank n vector bundles on X, E ⊂ E ′ ⊂ E(x),dim(E ′/E) = 1}.

Remark 37. For E fixed, E ⊂ E ′ ⊂ E(x) is the same as subspaces of E(x)/E so all possible choices are a
union of the Grassmannian of E(x)/E.

Then the Hecke stack is the same as P(E(x)/E).

In terms of the geometry: the map Hx
←−
h−→ BunGLn

is a Pn−1-bundle.

Definition 21. Tx : Shv(BunGLn) → Shv(BunGLn) is given by h⃗!
←−
h ∗[n − 1] (= h⃗∗

←−
h

!
[−(n − 1)]). (Other

conventions exist.)

A very very proto-version of a Hecke eigensheaf:

Definition 22. If σ is a rank-n local system on X, we could ask for F ∈ Shv(BunGLn) with a “canonical”
isomorphism Tx(F)→ F ⊗ σx, where σx is the fibre of σ at x.

Can F be a local system? Exercise: prove F ̸= 0 cannot be a local system for n > 1.
Better:
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Definition 23 (better standard Hecke stack8). HX has map h⃗ : BunGLn ×X given by (E ′, x) and the fibres
over X give Hx.

Definition 24 (better Hecke operator). TX : Shv(BunGLn
)→ Shv(BunGLn

×X) is h⃗!
←−
h ∗[n−1] = h⃗∗

←−
h ![−n+?].

Definition 25 (better Hecke eigensheaf). Same but TX(F) = F ⊠ σ.

Remark 38. A PGLn bundle is a rank n vector bundle up to tensoring by line bundles. The standard Hecke
stack makes sense for these also.

Definition 26 (length-i standard Hecke stack). Instead of dim E ′/E = 1, it is i instead.

Definition 27 (T iX). Shifts are now [i(n− i)] = dimGr(n, i) and [???]. That is T iX = h⃗!
←−
h ∗[i(n− i)].

Definition 28 (better2 Hecke eigensheaf). T iX(F) = F ⊠
∧i

σ∀0 < i ≤ n.

Remark 39. When G = GL1: TX : Shv(BunGm
) → Shv(BunGm

×X) which is the pullback along X ×
BunGm

→ BunGm
which sends (x,L)→ L(−x).

8This is the standard Hecke stack while the previous definition is the standard Hecke stack at x ∈ X.
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17 Constant Term Functors andWhittaker Coefficients: 06/11/2025

Scribe: Minghan Sun
The goal of this and the next few lectures is to discuss “q-expansion” and Whittaker coefficients.

17.1 Constant term functions of modular forms

Recall 1. Suppose f is a (holomorphic) modular form. Recall that f has a q-expansion

f(q) = a0 + a1q + a2q
2 + · · · . (38)

We have

a0 =

∫
R/Z

f(τ) (39)

an =

∫
R/Z

f(τ)e−2πnτ , (40)

where R/Z denotes any horizontal line segment going from the left to the right of the fundamental domain of
the SL2(Z)-action on the upper half plane.

Remark 40. It is often advantageous to consider the constant term of the q-expansion (i.e. a0) as different
from the other coefficients an. For example, it is better to think of a0 as a function out of R>0 such that

a0(y) =

∫
iy+RZ

f(τ). (41)

If f is a holomorphic modular form, then a0(y) is a constant function. However, if f is not holomorphic
(e.g. if f is a Maass form), then a0(y) is not necessarily constant.

17.2 Constant term functors of automorphic forms

17.2.1 The rough idea

In the world of modular forms, the constant term function integrates over shifted copies of R/Z. We have
said many times that R/Z is analogous to F\A. As a result, it is reasonable that the constant term functor
associated to an automorphic form should integrate over “shifted copies of F\A” in some precise sense which
we will describe. Moreover, in the world of modular forms, the constant term functions integrates over Ga-
shifted copies of R/Z. So it is reasonable that the constant term functor of an automorphic form should
integrate over U -shifted copies of F\A (where U is the unipotent radical of some parabolic), since U (up to
“smudging”) is not that different from Ga.

Let us illustrate the above discussion a little bit. Suppose we have (G,P,U,M) and suppose ϕ :
G(F )\G(A)/G(O) → C is an automorphic form. We want to produce a function that gives us values of
integrals of ϕ along U -shifted copies of F\A.

We have a diagram

G(F )\G(A)/G(O) p←− P (F )\G(A)/G(O) q−→M(F )U(A)\G(A)/G(O). (42)

We can immediately define the pullback function p∗(ϕ) : P (F )\G(A)/G(O) → C. We can define an-
other function ϕ̃ : M(F )U(A)\G(A)/G(O) → C by integrating p∗(ϕ) along the fibers of q, i.e. for all
x ∈M(F )U(A)\G(A)/G(O), we have

ϕ̃(x) =

∫
q−1(x)

p∗(ϕ). (43)

What do the fibers of q look like? Well, each fiber is isomorphic to P (F )\M(F )U(A) = U(F )\U(A). So we
have indeed produced a function (ϕ̃) that gives us values of integrals of ϕ along U -shifted copies of F\A.
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17.2.2 The precise definition

Now we aim to geometrize the discussion in section 17.2.1 to obtain the precise definition of the constant
term functor of an automorphic form.

We have to use the following theorem:

Theorem 14 (Iwasawa Decomposition). Suppose G is a reductive algebraic group and K is a nonarchimedean
local field with ring of integers OK . Then

G(K) = G(OK) ·B(K). (44)

As a result, if F = Fq(X0) is a function field, then we have

G(A) = B(A) ·G(O). (45)

Proposition 6. We have

P (F )\G(A)/G(O) = P (F )\P (A)/P (O) (46)

M(F )U(A)\G(A)/G(O) =M(F )\M(A)/M(O). (47)

Proof. By theorem 14, we have

P (F )\G(A)/G(O) = P (F )\P (A)G(O)/G(O). (48)

It is clear that the RHS equals P (F )\P (A)/P (O), as desired. The second equality in the proposition is
proven similarly.

Recall 2. Recall that if H is a reductive algebraic group, then

H(F )\H(A)/H(O)←→ {points of BunH}. (49)

As a result, it makes sense to define the following.

Definition 29 (constant term functor). Suppose G is an algebraic group, P is a parabolic subgroup, and M
the associated Levi subgroup. We have a diagram

BunG
p←− BunP

q−→ BunM . (50)

We define the constant term functor of G with respect to P , denoted (CTP )!, as the functor q!p
∗ (note that

(CTP )! is a functor from Shv(BunG) to Shv(BunM )).

Definition 30 (cuspidal sheaves). Setting as in definition 29. Suppose F ∈ Shv(BunG). Then we say F is
cuspidal if for all parabolics P ⊆ G, we have (CTP )!(F) = 0.

17.3 Whittaker coefficients (function-theoretic)

17.3.1 Character for A/F

Construction 1 (character of A/F ). We will construct a character ψ : A/F → C× which is not quite
canonical.

Choose a 1-form ω on U ⊆ X0, i.e. choose a 1-form ω with no zeros or poles on U .
For all closed points x ∈ X0, let Fx denote the Laurent series at x. We have a map Fx → C× given by

f 7→ exp(tr(Res(f · ω)2πi)). (51)

Collecting, we get a map A→ C×. This map is zero on F ⊆ A by the sum of residues formula.

Remark 41. The character A/F ψ−→ C× we just constructed is analogous to the character R/Z→ C× given
by τ 7→ e2πiτ .
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17.3.2 Whittaker coefficients for GL2

Now suppose G = GL2 with N ≃ Ga and f : G(F )\G(A)→ C is an automorphic function. To construct the
Whittaker coefficients of f , we play a similar game as section 17.2.1. Our diagram is now

G(F )\G(A)← N(F )\G(A)→ (N(A), ψ)\G(A), (52)

where ψ is the character constructed in construction 1. Note that the rightmost space is not really defined
because we don’t have a notion of a quotient with a character. However, the functions on this ’space’ are
well-defined: they are functions on G(A) that are ψ-eigenvalues of the N(A) action.

To spell out the above more concretely, to calculate the Whittaker coefficients of f , we simply calculate
the values of the integrals ∫

N(A)

f(ng)ψ(n)−1dn (53)

for all g ∈ G(A).

17.3.3 Whittaker coefficients for general G

For a general reductive group G, we have maps

N →
∏

simple roots

Ga
sum−−→ Ga. (54)

This is called a “Whittaker” or “nondegenerate” character. We can play the same game as in the GL2

case.
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18 Geometrization of Whittaker Coefficients: 11/11/2025

Scribe: Vladyslav Zveryk

From Whittaker Coefficients to Geometrization

In this lecture, we connect the classical theory of Fourier-Whittaker coefficients of automorphic forms with
its geometric analogue. Recall that last time we chose a rational 1-form ω on X which defined a map

N(A) A C×
sum◦proj

ψ

that led to the picture

G(F )\G(A)/G(O)← N(F )\G(A)/G(O)→ (N(A), ψ)\G(A)/G(O).

The Whittaker coefficient of f was defined by:

Wf (g) =

∫
N(F )\N(A)f(ng)ψ(n)−1dn, g ∈ N(A)\G(A)/G(O).

1. Classical Setting (Function Fields)

Notation

• Λ is the weight lattice, Λ̌ is the coweight lattice.

• Λ+ are dominant weights, Λ̌+ are dominant coweights.

• ∆ are roots, ∆̌ are coroots.

We have
T (A)/T (O) ∼= DivΛ̌(X),

where DivΛ̌(X) is the group of Λ̌-valued divisors on X, i.e., finite formal sums D =
∑
x∈X

λ̌x · x with λ̌x ∈ Λ̌.

By the Iwasawa decomposition, we have an isomorphism

N(A)\G(A)/G(O) ≃ T (A)/T (O),

which leads to

Proposition 7. Every (N(A), G(O))-double coset can be represented by a unique Λ̌-valued divisor.

For a divisor D =
∑
x∈X

λ̌x ·x ∈ DivΛ̌(X), we denote the corresponding element in T (A) by tD. Concretely,

it is defined as
tD = (λ̌i(tx))x∈X ,

where tx is a chosen uniformizing parameter at x ∈ X. Clearly, this construction depends on the choice of
the uniformizing parameters, but this dependence is fixed after quotiening by T (O).

The construction says that the non-zero Whittaker coefficients are indexed by D. In fact, many of the
Whittaker coefficients are zero:

Proposition 8. Let I(g) :=
∫

N(A)
f(n′g)ψ(n′)dn′. If there exists n ∈ N(A) such that ψ(n) ̸= 1 and t−DntD ∈

G(O), then I(tD) = 0.
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Proof. Assume f is right G(O)-invariant. Let n ∈ N(A) satisfy the conditions.

I(tD) =

∫
N(A)

f(n′tD)ψ(n′)dn′

=

∫
N(A)

f(n′ntD)ψ(n′n)dn′ (change of variable n′ → n′n)

= ψ(n)

∫
N(A)

f(n′(ntD))ψ(n′)dn′

= ψ(n)

∫
N(A)

f(n′tD(t−DntD))ψ(n′)dn′

= ψ(n)

∫
N(A)

f(n′tDk)ψ(n′)dn′ (where k = t−DntD ∈ G(O))

= ψ(n)

∫
N(A)

f(n′tD)ψ(n′)dn′ (by G(O)-invariance)

= ψ(n)I(tD)

Since ψ(n) ̸= 1, we must have I(tD) = 0.

Summary: The Whittaker coefficients Wf (t
D) are non-zero only when D satisfies a positivity condition.

These ”Whittaker cells” are indexed by Λ̌+-valued divisors (dominant coweight-valued divisors).

• Example (G = PGL2): Λ̌+ = Z≥0ω̌1. The coefficients are indexed by effective divisors D =
∑
nx · x

with nx ≥ 0.

• Example (X = SpecZ): Divisors
∑
np[p] correspond to integers

∏
pnp . The coefficients Wf (t

D)

correspond to the classical Fourier coefficients an(f) where n↔ D.

2. Geometrization

We now replace classical objects with their geometric counterparts (stacks, sheaves). Let G = PGL2 and Ω
be the canonical bundle on X. We introduce a twist.

We have N = Ga and

N(F )\N(A)/N(O) = BunN ≃ {0→ OX → E → OX → 0} .

We consider the stack BunΩN of extensions:

BunΩN := {0→ Ω→ E → OX → 0}

This stack is
BunΩN

∼= RΓ(X,Ω)[1] ≃ H1(X,Ω)× BH0(X,Ω),

because its points are parametrized by Ext1(OX ,Ω) ∼= H1(X,Ω), and their automorphisms are H0(X,Ω).
By Serre duality, H1(X,Ω) ∼= H0(X,OX)∗ ∼= A1. This gives a map ψ : BunΩN → H1(X,Ω) ∼= A1. The
picture is

NΩ(F )\NΩ(A)/NΩ(O) Fq A1

ψ
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Let pN : BunΩN → BunG be the forgetful map sending the extension E to the G-bundle E . (Note that
deg E = Ω, so the image of this map will lie in the corresponding connected component of BunG).

The basic Fourier coefficient is the functor:

coeff ! : Shv(BunG)→ Vect

F 7→ RΓc(Bun
Ω
N , p

!
NF ⊗ ψ∗AS).

This is an analogue of a1(f).

Generalization (Higher Coefficients)

To geometrize the coefficients an(f) (or Wf (t
D)) for an effective divisor D, we define a modified stack. Let

BunDN be the stack of extensions:

Bun
Ω(−D)
N := {0→ Ω(−D)→ E → OX → 0}

This corresponds to Ext1(OX ,Ω(−D)) ∼= H1(X,Ω(−D)).
We have a map pN,D : BunDN → BunG sending the extension to E . We also have a map

ψD : BunDN → H1(X,Ω(−D))→ H1(X,Ω) ≃ A1.

The generalized coefficient functor (analogue of an) is:

coeffD,! : Shv(BunG)→ Vect

F 7→ RΓc(Bun
D
N , p

!
N,DF ⊗ ψ∗DAS).
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19 Hecke Eigenforms: 13/11/2025

Scribe: Zachary Carlini

Geometerization of Cuspidal Hecke Eigenforms

19.1 The function-theoretic story

For f ∈ Fun (BunG(Fq)) and D a divisor on X, we define:

CD(f) =

∫
Bun

Ω(−D)
N (Fq)

f(n)ψ(n)dn,

so the functional CD is a decategorification of coeffD,!. This is our automorphic analog of the Fourier
coefficient functional an(f) =

∫
Ga
f(τ)e−2πinτdτ . The Langlands philosophy predicts that given a (nice)

representation σ : WX → SL2(Ql), there should be a corresponding automorphic form fσ ∈ Fun (BunG(Fq))
such that:

• fσ is cuspidal. This means that for every line bundle L on BunGm
(Fq),∑

{0→L→E→OX→0}/∼=

fσ(E ) = 0.

• The coefficients CD(f) can be calculated as follows.

– C0(f) = 1 (f is ”normalized”).

– C[x](f) = tr
(
σ(Fx) ↷ Ql

2
)
, where Fx ∈ WX is the image of the Frobenius map under the

homomorphism W{x} →WX induced by the inclusion {x} ↪→ X.

– For x ∈ X and n ≥ 1, Cn[x](f) · C[x](f) = C(n+1)[x](f) + C(n−1)[x](f).

– If D1 and D2 are disjoint divisors, then CD1+D2
(f) = CD1

(f)CD2
(f).

Equivalently, for a divisor D =
∑
x∈X nx[x], the coefficient CD(f) can be calculated as:

CD(f) =
∏
x∈X

tr
(
σ(Fx) ↷ Symnx

(
Ql

2
))

.

Exercise 7. Given σ : WX → SL2

(
Ql
)
, there exists exactly one function f̃σ on BunB(Fq) (which surjects

onto BunG(Fq)) with the correct Whittaker coefficients. Since fσ is supposed to be defined on BunG, it is
overdetermined.

Next, we categorify.

19.2 The sheaf-theoretic story

Given an irreducible rank-2 local system σ on X together with a trivialization ∧2σ ∼= Ql, we should be able
to produce a Hecke eigensheaf Fσ on BunG such that:

• Fσ is cuspidal. This means that CT!(F ) = 0.

• For a divisor D =
∑
x∈X nx[x], we have coeffD,!(Fσ) ∼=

⊗
x∈X Symnx(σx), at least up to a shift.

However, unlike functions, sheaves are not completely determined by their fibers at points. Therefore, we
should ask for a stronger, global statement rather than just imposing conditions on coeffD,! for each divisor
individually.
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Fix d ≥ 0. The set of all divisors D of degree d has a natural geometry – it can be identified with the
points of Symd(X). We can define a functor coeffd,! such that for every point D ∈ Symd(X) with inclusion

map ιD : {D} → Symd(X), the following diagram commutes:

Shv(BunG)

Shv
(
SymdX

)
Shv ({D})

coeffd,!
coeffD,!

ι∗D

The natural way to do this is as follows. We have a diagram:{
D ∈ SymdX, 0→ Ω(−D)→ E → OX → 0

}

BunG A1 SymdX

π1

π2
π3

where for p = (D, 0→ Ω(−D)→ E → OX → 0), π1(p) = E , π2(p) = ψ
(
0→ Ω(−D)→ E → OX ∈ Bun

Ω(−D)
N

)
,

and π3(p) = D. If AS ∈ Shv(A1) is the Artin-Shreier sheaf, we define:

coeffd,!(F ) = π3! (π
∗
1(F )⊗ π∗2(AS)) .

We can now ask for a stronger condition on Fσ. Namely, for every d, we require:

coeffd,!(Fσ) ∼= σ(d).

(Recall that σ(d) is defined as add∗(σ
⊠d)Sd , where add : Xd → SymdX is the map that sends (x1, . . . , xd) to

the divisor [x1] + · · ·+ [xd])

19.3 Other groups

So far, we have been working with G = PGL2, but what about other algebraic groups? We saw that in this
case, the Whittaker coefficients should be indexed by Λ̌+-valued divisors. Given a representation σ :WX →
Ǧ
(
Ql
)
, we should be able to attach a function fσ which, for every Λ̌+-valued divisor D =

∑
x∈X λ̌x[x],

satisfies:
CD(f) =

∏
x∈X

tr
(
σ(Fx) ↷ V λ̌x

(
Ql
))
.

Coming Up...

In the following lectures, our goal will be able to make stuff feel more concrete. We will talk about:

• The geometry of cuspidality

• Why the coeffd,!(F ) values determine F uniquely

• Hecke operators

• The geometry of BunG (especially when G = GL2, PGL2, or maybe SL2)

Here is a starting point. There is a surjective map BunGL2
→ Z which sends a vector bundle E on X

to its degree. It turns out this map induces an isomorphism π0(BunGL2
)
∼−→ Z. If x ∈ X and E is a vector

bundle on X, the degrees of E and E (x) differ by rankE . In particular, the parity of a degree-2 vector
bundle on X is invariant under tensoring with a line bundle. Since BunPGL2

∼= BunGL2 /BunGm, we obtain
π0(BunPGL2

) ∼= Z /2Z.
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Figure 1: A cartoon of BunPGL2

20 Semistability: 18/11/2025

Scribe: Joakim Færgeman

20.1 Definitions

For a vector bundle E , write

µ(E) := deg(E)
rank(E)

.

We refer to µ(E) as the slope of E .

Definition 31. We say E is semistable if for all subbundles E0, we have

µ(E0) ≤ µ(E).

Example 41. If deg(E) = 0, then E is semistable if and only if any subbundle E0 satisfies that deg(E0) ≤ 0.

Example 42. Let L be a line bundle. Then E := L ⊕ L∨ is semistable if and only if deg(L) = 0.

Remark 42. Observe that for a vector bundle E and a line bundle L, we have

µ(E ⊗ L) = µ(E) + µ(L).

It follows that if E is semistable, then so is E ⊗ L.

Remark 43. A vector bundle E on a smooth projective curve X has many subbundles in the following sense.
Let ηX = Spec(k(X)) be the generic point of X. Since E is Zariski-locally trivial, the k(X)-vector space

V := Γ(ηX , E)

has dimension rank(E). Let W ⊂ V be a subspace of dimension m. Consider the Grassmannian associated
to E:

πE : Gr(E)→ X

parametrizing subbundles of E of rank m. The subspace W defines a map f : ηX → Grm(E). The map π is
proper, and so by the valuative criterion for properness, the map f extends to a map
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X → Grm(E).

That is, we obtain a subbundle of E of rank m.

Example 43. Suppose E is a rank 2 vector bundle that is not semistable. This implies that there exists a
subbundle L → E such that deg(L) > 0. It is a simple exercise to see that in this case, L is the unique line
subbundle with this property. The induced filtration

0→ L → E → E/L → 0

is referred to as the Harder-Narasimhan stratification of E.

Let us make this last example more geometric. Let us take our structure group to be G = PGL2, so that
the standard Borel subgroup B of G can be identified with invertible upper triangular matrices whose lower
right entry is 1. For d ∈ Z, consider the stack

BundB = {0→ L → E → OX → 0, deg(L) = d}

parametrizing rank 2 vector bundles E equipped with a filtration as above for some line subbundle L of degree
d. Note that we have a natural map

BundB → BunG

forgetting the filtration and remembering only the vector bundle E . We state the following proposition whose
proof we will see later in the notes:

Proposition 9. 1. The map BundB → BunG is a locally closed embedding for d > 0.

2. BundB → BunG is smooth for d << 0 with the dimension of the fibers going to infinity as d→ −∞.

3. The stack BunssG parametrizing semistable G-bundles is a quasi-compact open substack of BunG.

20.2 Deformation Theory

Suppose Y is a smooth variety and y ∈ Y . We have an associated tangent space TY,y of dimension dim Y.

20.2.1

If Y is a smooth stack, and y : Spec(k)→ Y, we can associate a corresponding tangent complex TY,y which is
a complex of k-vector spaces living in cohomological degrees [−1, 0]. Moreover, TY,y has Euler characteristic
equal to dim Y.

Slightly better, we may consider the quasi-coherent sheaf TY on Y whose fiber at y is TY,y.

Example 44. Suppose H is a linear algebraic group, and let Y = BH be the corresponding classifying stack.
Then

TBH = h[1] ∈ QCoh(BH) ≃ Rep(H).

Here, h is the Lie algebra of H considered as a representation of H via the adjoint action.

Example 45. Let X,Z be smooth stacks, and let Y = Maps(X,Z) be the space whose T -points, for some
affine test scheme T , is the groupoid Maps(X × T,Z). We have an evaluation map

ev : Y ×X → Z

and a projection map p : Y ×X → Y. Then we have:

TY ≃ p∗ ◦ ev∗(TZ) ∈ QCoh(Y).

Here, both the pullback and the pushforward is considered in the derived sense.
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Combining the above two examples, we obtain the following corollary for BunH = Maps(X,BH):

Corollary 8. For PH ∈ BunH , we have:

TBunH ,PH
≃ RΓ(X, hPH

)[1].

Here, hPH
= PH

H
× h is the vector bundle of rank dim H obtained by twisting the bundle PH by the adjoint

representation.

20.2.2

In particular, ifX is a smooth projective curve, we see that the tangent complex of BunH live in cohomological
degrees [−1, 0], which implies that BunH is smooth.

For a vector bundle E , we write hi(E) := dim Hi(X, E). By smoothness of BunH , we have:

dimPH
BunH = h1(hPH

)− h0(hPH
) = −χ(hPH

).

If H = G is reductive, then g ≃ g∗ as G-representations. In particular, deg(gPG
) = 0. By Riemann-Roch, we

obtain:

dim BunG = −χ(gPG
) = −deg(gPG

) + rank(gPG
)(g − 1) = (g − 1) · dim G.

20.2.3

As another example, let B be the standard Borel subgroup of G = PGL2. For a B-bundle

PB = 0→ L → E → OX → 0,

we have bPB
= E . So:

dim BundB = −deg(bPB
) + 2(g − 1) = 2(g − 1)− d.
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21 Harder-Narasimhan Filtrations: 20/11/2025

Scribe: David Fang
Last time, we started looking at the HN stratification of BunG, G = PGL2. In particular, we said that

the map

BundB = {0→ L → E → O → 0 | degL = d} pd−→ BunG

is smooth for d≪ 0.
In general, if f : Y → Z is a map of smooth stacks, it is smooth at y ∈ Y iff on tagnent complexes the

map H0(TY,y)→ H0(TZ,f(y)) is surjective.

Example 46. The map BG→ pt is smooth.

For us, we had:

H0(TBunB ,PB
) H0(TBunG,PG

)

H1(X, bPB
) H1(X, gPB

) H1(X, (g/b)PB
) 0

where the bottom row is exact. But

b =

(
∗ ∗
0 0

)
⊆
(
∗ ∗
∗ ∗

)
/diag = g =⇒ g/b =

(
0 0
∗ 0

)
B acts on g/b by Gm inverse to the standard character. Recall that H1(L∨) is dual to H0(L⊗Ω1), the latter
of which is 0 if degL ⊗ Ω1 < 0. In particular, we see that pd is smooth if d < −(2g − 2).

Remark 44. ANy vector bundle of rank > 1 admits a line sub-bundle of degree < −N for every N . Idea:
take an open U such that E|U ≃ O⊕rU . By wha t we said last time, a line subbundle of E is the same as a

point ℓ ∈ P r−1(k(X)), which is the same as a map X
f−→ Pr−1. Then we can take embeddings of arbitrarily

low degree, and degL ≈ −deg f + const.

In particular we have a smooth cover ∐
d<−(2g−2)

BundB → BunG

Since BundB is an Artin stack (e.g. by checking that BunGm
,BunGa

are), then BunG is as well. To get more
information, we’ll use the “Drinfeld compactification.” The classical references are:

• Braverman-Gaitsgory: Geometric Eisenstein Series. . .

• Simon Schieder: The Harder Narasimhan Stratification. . . .

Definition 32. Define compactification

BunB := {(E rank 2 v.b. , 0 ̸= π ∈ Hom(E ,OX))}

Explicitly: an S-point of BunB is a rank 2 vector bundle E on X × S, and a map of sheaves E pi−→ OX×S,
such that ∀s ∈ S, π|X×{s} ̸= 0.

There is a map

BunB → BunT = BunGm
, (E , π) 7→ det E =

2∧
E .
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We let BundB = {(E , π) | deg E = d}. We have maps:

BundB

Bun
d

B

BunG BunGm

pd qd

openπ surj.

pd qd

Proposition 10. pd is proper.

We won’t prove this; more or less this comes from the properness of Quot schemes. Let E π−→ O ∈ Bun
d

B

be a field-valued point. We can factor this as

E ↠ O(−D) ↪→ O

for some divisor D ≥ 0, so we get short exact sequences

0→ L = kerπ → E → O(−D)→ 0, 0→ L(D)→ E(D)→ O → 0.

Since we work over PGL2, we know

pd((E , π)) = pd+degD(0→ L(D)→ E(D)→ OX → 0)

Observe the following: for d≪ 0, consider the maps

BundB Bun
d

B

Bund mod 2
G

pd
pd

Since pd is smooth, we know the image of pd contains an open; on the other hand, pd is proper, so pd is
surjective in this case. This also makes it easy to see that

∐
d≥−N BundB → BunG surjects for all N ≫ 0.

Definition 33. Define Bunss,evenG to be the complement of the images of
∐
d>0 even Bun

d
B → BunevenG ; this

is also the complement to the image of Bun
2

B → BunevenG , so this is open.

The same logic as before shows that if we take Ud to be the G-bundles which are semistable or admit
filtration {L → E → O} for degL ≤ d, then Ud is also open. We also see that if PG ∈ BunssG is semistable,
then there is a universal constant N depending on g such that

∃0→ L → E → O → 0 7→ PG, −N ≤ degL ≤ 0.

This is because there is a universal N so that −degN ≤ degL. On the other hand since E is semistable,
degL ≤ 0. The same thing works for Ud, using −N ≤ degL ≤ d. This is enough to show that Ud is
quasi-compact, since it can be covered by finitely many BundB .

Remark 45. We can show for d > 0 that

BundB
≃−→ Ud \ Ud−2,

where the latter is given the reduced substack structure. This implies that BundB → BunG is locally closed for
d > 0.

General picture: BunevenG has an open quasicompact stratum of dimension 3g−3, and then smaller strata
BundB for d > 0 even, which has dimension 2g − 2 − d. For g > 0 the above shows automatically that

Bunodd,ssG ̸= 0 (since BunG has dimension 3g − 3 and is nonempty).

Remark 46. Stacky phenomenon: there are infinitely many strata, whose dimension tends to −∞.
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22 Fourier Inversion: 02/12/2025

Scribe: Soumik Ghosh As before we have G = PGL2. For n >> 0, in fact for n > 2g − 2, we have the map

BunnB
pn−→ BunnGm

If [0→ L → E → O → 0] ∈ BunnB , then the short exact sequence splits non-canonically and the ’ambiguity’
is given by Γ(L).

We have a universal vector bundle En → BunGm
with fiber Γ(L) at L. BunnB = BBunn

Gm
En.

Formally, X × BunnGm
carries a universal line bundle and En is its pushforward to BunnGm

.

Remark 47. For a general n, the fiber is the complex RΓ(L)[1].

We have
pn! : Shv(Bun

n
B)→ Shv(BunnGm

)

is an equivalence ∀n >> 0.
Application: F ∈ Shv(BunG) is cuspidal. (CT

n
! (F) = 0 ∀n). Suppose n >> 0. Then we have

CTn! (F) = qn!p
∗
nF = 0.

But qn! is an equivalence so p∗nF = 0.
So F is cuspidal =⇒ ∗-restriction of F to BunnB , a HN stratum vanishes for n > 2g − 2.
Picture: F vanishes around ∞ ⇐⇒ jn!j

∗
nF = F where jn : Un ↪→ BunG is the inclusion of the union

of strata ≤ n.
For functions, we have f : BunG(Fq) → C is cuspidal =⇒ Supp f ⊂ Un(Fq) and Un is quasi-compact

=⇒ Un(Fq) is finite =⇒ cuspidal automorphic functions are finite dimensional.
Let CTn∗ := qn∗p

!
n. Then Drinfield-Gaitsgory showed : ∀n we have

inv∗ ◦CTn∗ ≃ CT−n!

where inv : BunnGm

≃−→ Bun−nGm
is the morphism L → L−1

Application: F vanishes around ∞ iff F = jn!j
∗
nF = jn∗j

∗
nF . (clean extension property)

22.1 Fourier Inversion

We have coeffd! : Shv(BunG)→ Shv(SymnX).
Goal: For F cuspidal, the knowledge of coeffd! is equivalent to that of p∗−d−c(F). So if F is cuspidal, we

can recover F|∗BunB
from {coeffd!}.

We prove this using Fourier-Deligne equivalence.
Setup: V is a finite dimensional vector space over a field k. We define a functor

Shv(V )→Shv(V ∨)

F 7→F∨

Consider
V × V ∨

V A1 V ∨
pr1

ev
pr2

Then F∨ = pr2! (pr
∗
1F ⊗ ev∗AS).

Facts:

• Shv(V )
≃−→ Shv(V ∨)

• Upto shifts, we coincides with ()! ()∗ variant.
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• This story works for vector bundles/schemes.

Consider{
(L, ω ∈ γ(L)∨ = Γ(L∨ ⊗ Ω1)[1])

}
= E∨n En = {(L, s ∈ γ(L))} ⊃ Eon = {(L, s) : s ̸= 0} = SymnX

BunnGm
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23 More Fourier Inversion: 04/12/2025

Scribe: Youseong Lee

23.1 Fourier inversion (cont.)

Last time: Started “Fourier inversion” for G = PGL2.
The basic diagram where we do Fourier transform is:

Bun−n+2g−2
B E∨n En

BunG BunnGm
SymnX

pn ⊆

where n denote the degree and

En = {(L, s ∈ Γ(L))}
E∨n = {0→ Ω→ E → L → 0, Line bundle + Extension}

= {0→ Ω⊗ L−1 → E → O → 0}
= Bun−n+2g−2

B

and SymnX ⊆ En is open, complement to the zero section.

Remark 48. There is no similar complement construction to the zero section in E∨n , because zero section is
not a closed embedding in E∨n so that we cannot take its complement. Proof: The fiber over L ∈ BunGm

is

RΓ(L∨ ⊗ Ω)[1] = BH0(L∨ ⊗ Ω)×H1(L∨ ⊗ Ω)

where Spec k → BG is not a closed embedding in general, since its fiber is G.

This diagram captures a lot of constructions before.

Claim 4. Consider the following diagram:

Shv(SymnX)

Shv(BunG) Shv(BunB) Shv({(L, s ∈ Γ(L))})

Shv(BunGm
)

p∗

F1

F2

∼
FT

res

res∗ to 0

Then:

1. F1 = coeffn,!

2. F2 = CT!

Proof. Claim 1: For convenience, we fix D ∈ SymnX and take the fiber over it, using that the ∗-fiber of
coeffn,!(F) under {D} ↪→ SymnX is coeffD,!(F). The image of {D} ↪→ SymnX ⊆ {(L, s ∈ Γ(L))} is given
by

(L, s) = (O(D), 1 ∈ Γ(O(D)) ∈ En,
so the Fourier transform works along (E∨n )L, the fiber over L = O(D) ∈ BunGm

, where

(E∨n )L = {0→ Ω(−D)→ E → O → 0} = Bun
Ω(−D)
N .

Recall the required definitions:
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• coeffD,! : Shv(BunG)→ Vect maps

F 7→ RΓc(Bun
Ω(−D)
N , p!N,DF ⊗ ψ∗D(AS))

where

– Bun
Ω(−D)
N = {0→ Ω(−D)→ E → O → 0},

– pN,D : Bun
Ω(−D)
N → BunG maps the extension to E ,

– ψD : Bun
Ω(−D)
N → H1(X,Ω(−D))→ H1(X,Ω) ≃ A1

• FT maps p∗nF to pr2,!(pr
∗
1p
∗
nF ⊗ ev∗AS), so its restriction to {D} is

pr∗1p
∗
nF ⊗ ev∗AS ∈ Shv(E∨n ×BunGm

En)
res∗L−−−→ Shv((E∨n )L)

RΓc−−−→ Vect

Now the restriction of p∗nF to (E∨n )L coincides with p!N,D(F). Also, note that ev restricted to (En)
∨
L is the

same as the pullback along the Serre duality pairing

(En)
∨
L = {0→ Ω⊗ L∨ → E → O ∈ 0} = Γ(L∨ ⊗ Ω)[1] ≃ Γ(L)∨ s−→ A1.

which is exactly the same with ψD. Therefore, we have the following commutative diagram:

Bun
Ω(−D)
N (E∨n )L

E∨n ×BunGm
En A1 {D}

BunG E∨n En SymnX

BunB BunGm

pN,D

resL
ψD

pr1 pr2

ev

resL

pn res

p

from which we can show that

p!N,DF = res∗Lpr
∗
1p
∗
nF ∀F ∈ BunG

res∗Lev
∗AS = ψ∗DAS

and

res∗L ◦ FT ◦ p∗F = res∗Lpr2,!(pr
∗
1p
∗
nF ⊗ ev∗AS)

= RΓc((E
∨
n )L, res

∗
Lpr
∗
1p
∗
nF ⊗ res∗Lev∗AS)

= RΓc((E
∨
n )L, p

!
N,DF ⊗ ψ∗DAS)

= coeffD,!(F).

So these two are the same maps.
Claim 2: The general principle is:

(∗ − restriction to 0) ◦ FT = !− pushforward.

In our case,

BunB

BunG BunGm

p q

so that

CT! = q!p
∗ = res∗0 ◦ FT ◦ p∗ = F2.
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23.2 Towards Fourier theory of cuspidal sheaves

Upshot: if F is cuspidal, then
FT ◦ p∗F ∈ Shv({(L, s)})

is !−extended from the complement to the zero section =
∐

SymnX. This tells us that p∗−n+2g−2F is
uniquely determined by coeffn,!(F).

Remark 49. For functions, the same analysis says that cuspidal f is determined by its Whittaker coefficients.

Recall our earlier setup:

• σ: irreducibel SL2-local system on X

• Wanted: Fσ on BunG cuspidal with specified expansions.

Claim 5. Fσ is “overdetermined,” (assuming some properties.)

Proof. For n >> 0, we have

Bun−n+2g−2
B

smooth with connected fibers−−−−−−−−−−−−−−−−−−→ BunG .

We know that Fσ|Bun−n+2g−2
B

is FT of σ(n), so the restriction of Fσ to Bun−n+2g−2
B is determined. On the

other hand,

• One can see σ(n) is an irreducible perverse sheaf.

• So Fσ must be an irreducible perverse sheaf (here we assumed full support; otherwise pullback to
BunB .)

• Such an irreducible perverse sheaf is determined by its restriction along a smooth map.

Therefore, restriction to Bun−n+2g−2
B already determines the whole Fσ.

Our dream statement is: Cuspidal F can be recovered from its Fourier expansion

Shv(BunG)
{coeffn}−−−−−→

∏
Shv(SymnX).

However this is impossible because it is not fully faithful: RHS being a product kills this possibility. We need
some communications between different n’s.

There are various solutions to this problem. Some use Drinfeld’s compactification, etc. In this class, a
lazier approach will be used, with Hecke and CS. All approaches use some version of Ran’s space.

23.3 Hecke Symmetries

Let G be a general reductive froup, and Ǧ be its Langlands dual.
Hecke symmetry version 1.0:

Given V ∈ RepǦ, x ∈ X, then TV,x : Shv(BunG)→ Shv(BunG).

Example 47. For G = GLn or PGLn, their dual Ǧ = GLn or SLn and their standard representation V ,
we recover our earlier construction.

Briefly, the Hecke stack at x is

Hx =
{(
PG, P̃G, τ : PG|X\x ≃ P̃G|X\x

)}
where PG, P̃G are G-bundles. Hence we have

Hx

BunG Hlocx BunG

←−
h

−→
hγ
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where

Hlocx =

{
PG, P̃G on Dx,

τ : iso PG|D̊x
≃ P̃G|D̊x

}

and Dx = Spec k[[tx]] ⊇ D̊x = Spec k((tx)).

Remark 50. This is generalization of the standard Hecke stack, where we considered rank n vector bundles
with E ⊂ E ′ ⊂ E(x).

Remark 51 (Basic structure). Its geometric points up to isomorphism are given as Λ̌+, dominant coweights

for G. For example, there are locally closed substacks Hloc,λ̌x of Hlocx for each dominant coweight ˇlambda, and

Hloc,µ̌x ⊆ Hloc,λ̌x if and only if µ̌ ≤ λ̌,

that is, λ̌− µ̌ equals to some sum of simple coroots.

We have

Hlocx = L+G\GrG,x

where the loop groups are

LG = Map(D̊x, G)

L+G = Map(Dx, G)

and L+G ⊆ LG. Indeed, the definition of GrG,x fixes trivialization of E ′ = Dx×G, so that there is a pullback
diagram

Hlocx GrG,x

BL+G = BunG(Dx) ∗
triv

which also holds for the quotient L+G\GrG,x in the place of Hlocx .
Moreover, there is a natural isomorphism GrG ≃ LG/L+G, so we may write the local Hecke stack as

Hlocx = L+G\LG/L+G = Bun(Dx)×Bun(D̊x)
Bun(Dx)

and its global version as
Bun(X)×Bun(X\x) Bun(X).

Remark 52. There is a canonical functor

Rep Ǧ→ ShvHlocx , V λ̌ 7→ IC
Hloc,λ̌

that maps a representation to corresponding intersection cohomology sheaf. This is called the geometric Satake
functor.
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24 Geometric Hecke Symmetries: 09/12/2025

Scribe: Michael Horzepa

24.1 With a fixed x

Let us recall that last time, after fixing x ∈ X, we draw the following diagram to describe the Hecke Stack
at that point:

Hx

BunG BunG

Hlocx L+G\GrG,x

←
h

→
h

γ

≃

We recall that L+G\GrG,x is the points of X indexed by the dominant coweights of G. Now if we are

given a highest weight representation V λ̌ ∈ Rep Ǧ, we can construct the intersection cohomology sheaf
IC = IC

Gr
λ̌ ∈ Shv(L+G\GrG,x) on the local Hecke stack Hlocx . This allows us to construct the associated

Hecke functor:

TV λ̌,x : Shv(BunG)→ Shv(BunG)

F 7→
→
h∗(
←
h!(F)⊗ γ!IC)

We can summarize what’s going on more explicitly in the following:

Hx

BunG

{
P̃G on X + isom

P̃G|X\x ≃ PG|X\x

} {
P̃G on Dx + isom

P̃G| ◦
Dx

≃ PG| ◦
Dx

}

PG
Twisted version of

GrG,x

←
h

There is in turn the substack Hλ̌x ⊆ Hx which is a twisted version of Gr
λ̌

G ∈ GrG such that

γ!IC λ̌ = IC
Hλ̌

x

[shift].

The way to think about this construction is to view the IC sheaf as a sort of measure and the pull-back-
push-forward operation to be like integrating your sheaf against the measure. Viewed through this lens this
is very similar to standard Hecke algebras.

We can further make sense of TV,x for general V ∈ Rep Ǧ. First, we simply decompose along the irreducible
representations:

V =
⊕

V λ̌ ⊗Mλ̌, Mλ̌ ∈ Vect .

TheMλ̌ encode the multiplicity of the representation via its dimension. The corresponding Hecke Operator
is then:

TV,x =
⊕

TV λ̌,x ⊗Mλ̌.

A part of Geometric Satake Theory states that these operators should be compatible in the following way:

TV,x ◦ TW,x ≃ TV⊗W,x,
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and even better (depending on x ∈ X):

Rep Ǧ↷ Shv(BunG)

24.2 Allowing x to vary

This is nice for when x ∈ X is fixed, but now what if we want to vary X? Then we need to upgrade our
original picture for the Hecke stack:

HX
{
PG, P̃G, x ∈ X, + isom

PG|X\x ≃ P̃G|X\x

}

BunG BunG×X

HlocX {x ∈ X + a pt of L+G\GrG,X}

γ
←
h

→
h

This is the moving points version of our earlier construction. Then once again we can use these maps to
construct the Hecke functor for a representation V ∈ Rep Ǧ:

TV : Shv(BunG)→ Shv(BunG×X)

This functor has the basic property that taking the fiber at any x ∈ X gives exactly the map TV,x that we
constructed before. So we have just sensibly brought together all the Hecke operators for each point.

Now we can compose these new Hecke operators:

(TW × IdX)TV : Shv(BunG) Shv(BunG×X2)

TWTV Shv(BunG×X)

TV TW×IdX

These operators then have the following properties:

1. ∆!
XTWTV = TV⊗W

2. TWTV = swapX2 ◦ TV TW

3. The two properties above are compatible

In essense these enforce a commutativity constraint on our functors.
The ultimate form of what these current Hecke symmetries provide is a functor

Rep ǦI ⊗ Shv(BunG)→ Shv(BunG×XI)

for each I ∈ FinSet, which satisfy all the same compatibilities as above whenever you have a map of finite
sets I → J . But, let’s say we instead only want endofunctors on the category Shv(BunG). We can correct
this by selecting some G ∈ Shv(BunIG) for V ∈ Rep ǦI . Then we define

TV,G : Shv(BunG)→ Shv(BunG)

as the following:

Shv(BunG) Shv(BunG×XI)

Shv(BunG×XI)

Shv(BunG)

TV

TV,G

−⊗!p!2(G)

p1∗
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Once again, the idea is that G acts like a measure on XI along which we integrate to get our final output.

Example 48. Let I = ∗ the singleton set, and suppose we take G = δx the skyscraper sheaf at x ∈ X. Then

TV,G = TV,x

Example 49. Let I = {1, 2}, and suppose V = V1 ⊕ V2. Then the corresponding Hecke operator should be
the “integral”: ∫

TV1,x1TV2,x2Gx1,x2dx1dx2

There are various relations between these functors, and in fact the following diagram produces Hecke
Functors which are canonically isomorphic:

Shv(X)⊗ Rep Ǧ2 Shv(X)⊗ Rep Ǧ

Shv(X2)⊗ Rep Ǧ2

id⊗(tensor)

∆∗⊗Id

24.3 The Category Rep ǦRan and Geometric Casselman-Shalika

So we generate a large supply of these Hecke functors, but we would like some way to organize them all. It
turns out the category

Rep ǦRan := colimI→J Shv(X
J)⊗ Rep ǦI ,

is the source of them all. Let us take time to study this category itself. Firstly, the colimit is taken over the

twisted arrows category over FinSet. This means for each I
f−→ J ∈ Tw(FinSet), we have an insertion map:

Shv(XJ)⊗ Rep ǦI
insf−−−→ Rep ǦRan

These insertion objects are the basic objects of our category. Furthermore, for each commutative square

I1 J1

I2 J2

f1

f2

we have the following canonically commutative diagram:

Shv(XJ1)⊗ Rep ǦI1

Rep ǦRan

Shv(XJ2)⊗ Rep ǦI2

insf1

∆∗⊗(tensor)
insf2

There are even higher compatibilities on top of this, but we won’t discuss them here.
So the new ultimate form of our Hecke operators lie in the symmetric monoidal category Rep ǦRan acting

on Shv(BunG) via endofunctors. The operation making the category into a monoid is the following (defined
on the insertion objects, but clearly extends to the full category):

insf1(G1 ⊗ V1) ∗ insf2(G2 ⊗ V2) = insf1
∐
f2((G1 ⊠G2)⊗ (V1 ⊗ V2))
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Here we note that G1⊠G2 ∈ Shv(XJ1
∐
J2) while V1⊗ V2 ∈ Rep ǦI1+I2 . An object in Rep ǦRan is a moving

picture in some sense, where a single picture may consist of points of X with attached representations, but
as the picture moves and points collide, the representations tensor over the target point.

Let us back up for a moment, and return to the case where G = PGL2. Let D =
∑
nixi be an effective

divisor onX, which gives rise to the Hecke functor TD. Letting V
ni = Symni(Std) (Std indicates the standard

representation of PGL2) at xi, we obtain a correspondence

TV ni ,xi
↔
⊕

V ni ⊗ δxi

The following theorem then allows us to allow us to use our Hecke functors to enable fourier coefficients
of any degree to talk to one another:

Theorem 15. (Geometric Casselman-Shalika)

coeffD!(F) ≃ coeff0!(TD(F))

This generalizes to any G, where our divisor D is taken instead to be a Λ̌+-valued divisor.

Remark 53. If we take the ∗-version this also holds.

Remark 54. This was proven by Frenkel, Gaitgory, and Vilonen, but an alternate proof exists by Ngo.
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25 The Geometric Langlands Conjecture: 11/12/2025

Scribe: Zachary Carlini

25.1 Geometric Hecke Eigenforms

Recall from last time that we constructed an action of the monoidal category Rep ǦRan on Shv(BunG). We
will use this action to finally give the complete definition of a Hecke eigensheaf.

Let σ be a Ǧ-local system on X. Then σ is classified by a map π1(X) → Ǧ, so for any representation
Ǧ↷ V , we can form the composition π1(X)→ Ǧ→ GL(V ) to obtain a map π1(X)→ GL(V ) which classifies
a local system on X. Thus, we can associate to σ a (monoidal, exact) functor Rep Ǧ → Shv(X), V 7→ Vσ
which sends a representation of Ǧ to the resulting local system on X.

We want to construct a monoidal functor Fσ : Rep ǦRan → Vect which will play the role of the weight of
our Hecke eigenform (recall that in the decategorified setup, an eigenvector of an algebra has a weight given
by a character of that algebra, and Vect categorifies the scalars). A cartoon of Fσ is depicted in figure 2.

Figure 2: A cartoon of Fσ

Formally, Fσ will be the unique functor which, for each map of finite sets f : I → J , makes the following
diagram commute:

Shv(XJ)⊗ Rep ǦI

Shv(XJ)⊗ Shv(XI) Rep ǦRan

Shv(XI ×XI) Shv(XI) Vect,

F⊗V1⊗V2⊗···⊗Vk 7→F⊗(V1)σ⊠(V2)σ⊠···(Vk)σ
insf

F⊗S 7→(∆f )∗(F)⊠S
Fσ

∆! Γ

where ∆f : XJ → XI is the map which sends (xj)j∈J to (xf(i))i∈I .

Example 50. Let I be a finite set, let f = idI , and let x = (xi)i∈I be a point in XI . Let (Vi)i∈I be an
I-indexed tuple of Ǧ-representations. Then Fσ (δx ⊗ (Vi)i∈I) ∼=

⊗
i∈I x

!
i ((Vi)σ). This is what is depicted in

figure 2.

Using Fσ, we obtain an action of Rep ǦRan on Vect given by F ⋆ V = Fσ(F )⊗ V . Thus, we can define
a Hecke eigensheaf as follows:

Definition 34. A Hecke eigensheaf on BunG with weight σ is a (exact, continuous) Rep ǦRan-linear functor
Vect→ Shv(BunG), where Rep ǦRan acts on Vect through Fσ.

We will typically abuse notation and identify a Rep ǦRan-linear functor F with the sheaf F (Ql) since this
determines F (V ) up to isomorphism for every other vector space V .

Example 51. For x ∈ X and V a Ǧ-representation, there is an element Vx in Rep ǦRan which is the
image of ∂x ⊗ V under the structure map Shv(X) ⊗ Rep Ǧ → Rep ǦRan. If Rep ǦRan acts on Vect by Fσ
for some local system σ, then Vx ⋆ Ql ∼= (Vσ)x, so for any Hecke eigensheaf F with weight σ, we have
Vx ⋆F ∼= (Vσ)x ⊗F . But by definition, Vx ⋆F is what we were calling TV,x(F ) back in section 24.1. Thus,
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definition 34 is stronger than the naive definition of a Hecke eigensheaf, which is just a sheaf F on BunG
together with isomorphisms TV,x(F ) ∼= (Vσ)x ⊗F for all V and x.

Definition 35. A normalized Hecke eigensheaf is a Hecke eigensheaf F together with an isomorphism
coeff !(F ) ∼= Ql.

25.2 What Is Known

25.2.1 In Characteristic 0

In characteristic 0, the following statement is known, which was called the Geometric Langlands Conjecture:

Theorem 16 (GLC I-V). For every irreducible local system σ, there is a unique (up to contractible choice)
normalized Hecke eigensheaf Fσ with weight σ. Equivalently, if Shv(BunG)σ is the category of all Hecke
eigensheaves with weight σ, then coeff ! : Shv(BunG)σ → Vect is an equivalence.

Who is Fσ?

1. Fσ is cuspoidal.

2. There is a (useful? explicit?) formula for Fσ. There is an object Pσ in Rep ǦRan called the Beilinson
spectral projector which is the unique Hecke eigen-object of weight σ for Rep ǦRan ↷ Rep ǦRan.
Informally, Pσ attaches the regular representation of Ǧ to every subset of X, twisted by σ. Formally,
Pσ is uniquely characterized by the formula:

Hom(1, Pσ ⋆ V ) ∼= Fσ(V ),

where the isomorphism is natural in V . Then Fσ
∼= Pσ ⋆Poinc!, where Poinc! is the vaccuum Poincare

sheaf

This is manifestly a Hecke eigensheaf. The non-obvious fact is that it is nonzero. The analogy to
eigenvectors of algebras is the following: given a linear linear functional σ : A→ k on an algebra A, one
can define a universal eigenvector of A of weight σ to be the A module generated by a single element
1 subject to the relations a.1 = σ(a).1 for all a ∈ A. Tensoring this module with any other A-module
M gives the σ-weight space Mσ of M . One can show that σ is actually a character by producing a
module M such that Mσ is nonzero. The statement that Pσ ⋆ Poinc! is normalized is analogous to the
statement that Mσ is one-dimensional.

3. Fσ is perverse up to a normalizing shift.

4. Up to a shift, Fσ is a direct sum of simple perverse sheaves.

Easy setup: σ is ”Schurian”, meaning Aut(σ) = ZǦ. In this case, the restriction of Fσ to any irreducible
component of BunG is simple.

In general, we have:

Fσ
∼=

⊕
ρ∈Irrep(Aut(σ))

F dim ρ
σ,ρ ,

where the Fσ,ρ are pairwise distinct simple perverse sheaves up to a shift. There are canonical identifi-
cations:

π0(BunG) ∼= π1(G) ∼= Irrep(ZǦ),

and the support of Fσ,ρ lies in the connected component of BunG corresponding to the central character
of ρ.

5. The singular support of Fσ, which is a subvariety of T ∗ BunG = HiggsG = {(ρG, φ ∈ gρG ⊗ Ω1)}, is
contained in the subvariety Nilp = {(ρG, φ) : φ is nilpotent}.

5 1
2 . The characteristic class of Fσ is [Nilp], which allows us to compute that the generic rank of Fσ is∏

i d
(2di−1)(g−1)
i , where (di)i are the degrees of G.

6. In the D-modules setup, Fσ can be described as the D-module freely generated by a single generator
subject to some explicit relations after choosing an oper structure on σ. This result is due to [BD91].
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25.2.2 In Positive Characteristic

We know that coeff ! : Shv(BunG)σ → Vect is fully faithful, but we don’t know that Shv(BunG)σ is nonzero.
When Fσ exists, statements 1, 2, 3, 4, and 5 go through, but statement 5 1

2 is unknown, and statement 6
does not make sense.

When G is GLn, PGLn, or SLn?, normalized Hecke eigensheaves exist for all σ.
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