Proceedings of Symposia in Pure Mathematics

An arithmetic application of geometric Langlands
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ABSTRACT. Vincent Lafforgue has constructed a Langlands decomposition of the space of cuspidal auto-
morphic functions for function fields. In our joint work with Arinkin, Gaitsgory, Kazhdan, Rozenblyum,
and Varshavsky, we showed that a version of the geometric Langlands conjectures yields a description of the
eigenspaces of Lafforgue’s decomposition in the everywhere unramified case.

In this note, we give an overview of the latter circle of ideas. We then explain how to use these methods
to show that geometric Langlands implies that there are no everywhere unramified cusp forms with trivial
Langlands parameter, addressing a question of Michael Harris.

Of some independent interest, we calculate a spectral analogue of pseudo-Eisenstein series near the
trivial Langlands parameter in some explicit terms. In suitable coordinates, we find it is a product of the
Weyl character formula with a zeta factor related to the curve.

1. Introduction

1.1. Background and goals.

1.1.1. In our joint works [2], [3], and [4] with Arinkin, Gaitsgory, Kazhdan, Rozenblyum, and Var-
shavsky, we formulated a conjectural spectral decomposition of unramified, compactly supported automor-
phic functions. This conjecture was also found by X. Zhu in [32].

Our spectral decomposition, inspired by V. Lafforgue’s breakthroughs [22] and by the geometric Lang-
lands conjecture of Beilinson-Drinfeld, is of Langlands type, but of different nature: it describes all (compactly
supported) automorphic functions, not merely eigenforms, and it yields both reciprocity and functoriality
statements without explicitly incorporating either into its formulation.

One major purpose of our work was to show that the spectral decomposition actually follows from an
{-adic version of the geometric Langlands conjecture.

1.1.2. In advertising our joint work, including in my talks at IHES, I have tried to argue that our
conjecture yields new insights into automorphic functions that should be of interest to number theorists.
Our conjecture is most manifestly satisfying around discrete (alias: elliptic) Langlands parameters (cf.
Example 2.4.5.1). But I have been hard pressed to give precise, concrete consequences near other Langlands
parameters.

For instance, our conjecture as is does not immediately reproduce the Arthur multiplicity formula for
discrete series. Further development of the theory is needed to understand such forms.

1.1.3. With that said, the main new contribution of this note is to give a simple, concrete application
of our work to automorphic functions, answering a question of Michael Harris. The assertion statement
concerns the trivial Langlands parameter, which is essentially as far from discrete as possible.
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1.1.4. In addition, befitting conference proceedings, in §2 we provide some introduction to the geometric
Langlands program and the circle of ideas developed in [2], [3], and [4]. These two parts of the paper can
be read essentially independently.

The reader who is most interested in this survey material might skip ahead to §2; as that material is by
its nature introductory, the emphasis of the remainder of the introduction is on the problem considered in
the latter part of the paper.

1.2. Statement of the main result.

1.2.1. Setting. We fix F, a finite field of characteristic p and let k = F, denote its algebraic closure. We
let ¢ # p be a fixed prime and let e denote Qy; this is the field of coefficients in the terminology of [2]. We
fix G/F, a split reductive group and let G'/e denote its Langlands dual group.

Let Xo/F, be a smooth, projective, and geometrically connected curve, and we let X = X, x¥, k denote
its base-change to k.

We let F' = F,(Xo) denote the global field associated with X,. We let A denote its ring of adeles and
let O < A denote the subring of integral adeles.

We let Autg?, denote the space of everywhere unramified, compactly supported automorphic function for
F. By definition, this means that Auti™ is the vector space of functions:

G(F)\G(A)/G(O) — e

with finite support. We let Autgys, < Auty™ denote the subspace of cuspidal automorphic forms.

1.2.2.  We fix once and for all a k-point of X to use as the base-point for our fundamental groups; we omit
it from the notation.? We let 7$*(X) denote the étale fundamental group of X, we let 737" (X) := 75*(X,)
denote the arithmetic fundamental group, and we let Wy := 7rthm(X) X5 Z denote the Weil group of X

(considered with its standard topology, so that 7$*(X) € Wx is open).

NOTATION 1.2.2.1. For definiteness: we always use geometric Frobenius conventions. So we have iden-
tified Z ~ 7{*(Spec(F,)) with generator of Z corresponding to the geometric Frobenius element.

1.2.3. Lafforgue-Langlands decomposition. For the moment, we assume that G is semisimple to simplify
the discussion. (The body of the paper works with general reductive groups.)

A Langlands parameter is a continuous homomorphism p : Wx — G‘(e). A Langlands parameter is
semi-simple if for any parabolic P G such that p factors through P(e), there exists a Levi factor M < P
so that p further factors through M(e) (see [2] §3.5-3.6).

We now remind that [22] constructed a decomposition:

(1.1) Autir o~ [ea] Autinr

cusp cusp,[o]

where [o] runs over conjugacy classes of semi-simple Langlands parameters.

REMARK 1.2.3.1. The above applies just as well for ramified automorphic functions. Our main results
are restricted to the unramified setting, so we have chosen simply to emphasize the unramified setting
throughout this text.

1.2.4. The main result in this note is the following:

THEOREM A. Let G be semi-simple (and not the trivial group). Let triv : Wx — G(e) denote the trivial
Langlands parameter, i.e., the constant map with value the identity.

Assume the restricted geometric Langlands conjecture of [2] with its compatibility with Eisenstein series.

Then the summand Aut il . q S Autdl, is zero. In other words, there are no unramified cusp forms
with trivial Langlands parameters.

IWe remind the reader of the well-known fact that over function fields, cuspidal automorphic forms are a priori compactly
supported.

2t is better to think in terms of the category of lisse sheaves on X, as we often do. We use 7r§3t simply to make some points
of our discussion more concrete.
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REMARK 1.2.4.1. Although we do not emphasize this in the text, one can get by with less. Namely,
according to [2] Corollary 14.3.5, Shvyi;,(Bung) breaks up as a sum over semi-simple G-local systems on
X. One only needs restricted geometric Langlands for the trivial local system. We expect forthcoming work
to completely address this problem.

REMARK 1.2.4.2. Roughly speaking, the argument goes as follows. In §3, we discuss what Eisenstein
series corresponds to on the spectral side of arithmetic Langlands. Then in §4, we provide local coordinates
on Lsgthm near the trivial local system (see Theorem 4.3.3.1) and then explicitly calculate spectral Eisenstein
series in these coordinates (see Theorem 4.7.2.1). From here, the result is essentially obvious (see Lemma
3.7.1.1).

REMARK 1.2.4.3. We remark that one key point of the proof of Theorem 4.7.2.1 suggests a relationship
between manipulations with certain divergent series and categorical trace methods. We spell out our ideas
on this subject — such as they are — in §4.6.5. This material can be read essentially independently of the rest
of the paper.

1.3. Some comments.

1.3.1. Motivation I. The vanishing of Aut?}i‘épitriv] is an ingredient in forthcoming work of Beuzart-
Plessis—Harris—Thorne studying the local Langlands correspondence for function fields via the trace formula.
The above theorem leaves their results conditional on the geometric Langlands correspondence, on which a
great deal of progress has been made in recent years.

1.3.2. Motivation II. For G = PGL,, any cusp form has irreducible Langlands parameter, i.e., in this
case AUt::lSsrp,[o'] = 0 unless o is irreducible; we refer to [22] Lemma 16.4 for a recent treatment (following
parts of [20]; see the statement of [20] Theorem V1.9 in particular).

However, for general G the situation is more complicated: cusp forms may have reducible Langlands
parameters; this is related to the failure of the Ramanujan conjecture for these cusp forms.

Still, Arthur’s conjectures provide some restrictions on the ¢’s that may appear. First, note that there is
gl
a canonical map Wx — Z 129, eX that we denote v = |v|; choosing /q € €*, we then obtain a canonical
map:
WX — WX X SLg(e)
(1.2) A/l oo
e (77 0 1 )
Vil

Arthur’s conjectures predict that .Aut;’};p [o] will be zero except possibly when o extends along (1.2) to an

irreducible representation of Wx x SLy into G.3
1.3.3.  Suppose we are given such an Arthur parameter of : Wy x SLy — G, and suppose its restriction

to w¢*(X) is trivial, so we have a map of : Z x SLy — G. Let f € g(e) denote the logarithm of o (O, (1 8))
and let F € G‘(e) denote the image of (1, (? \%)). Note that F' encodes the underlying Langlands

parameter of o, and also note that Adg(f) = ¢f. We also note that f must be non-zero, or else o will not
be irreducible.
We then arrive at:

CONJECTURE 1.3.1. Suppose F € G(e) is a semisimple element and let op : Wx — G(e) denote

the corresponding Langlands parameter Wx — Z RiniN G(e). Then .Autgfl‘;p [F] is trivial unless q is an

eigenvalue of Adp : § — @.

REMARK 1.3.3.1. Of course, ¢ can be replaced by ¢~! in this conjecture (apply the Cartan involu-

tion on Arthur’s SLsy), which partially reflects the invariance of the conjecture under modifications of our
normalizations (like geometric vs. arithmetic Frobenius).

3Formally, this means we have a map SLy — G over e and a continuous map Wx — G(e) whose image commutes with the
image of SLa(e) — G(e).
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Assuming geometric Langlands, we will prove something close to this conjecture. Namely, we will

show that Aut?ggp,[op] = 0 unless Adr has an eigenvalue equal to a Frobenius eigenvalue appearing in

H} (X) x HZ,(X); as q is the Frobenius eigenvalue on HZ (X), this is somewhat stronger than the hypotheses
of the conjecture. We remark that the case where F' is the identity yields Theorem A.

1.4. Conventions and notation. Our hope is that this note can serve as a point of entry to the long
papers [2], [3], [4]. We have provided some background in §2. We also refer the reader to the introduction
of [2] for more background on the subject. We have also aimed to include precise citations whenever we use
technical results from these papers with the hopes that this can help the reader navigate these works.

We generally maintain the conventions and notation of [2]; we refer to §0.9 in particular. We work over
the geometric field k = Fq for geometry of the curve X, its moduli stacks Buny of H-bundles, and so on,
and we use the characteristic 0 coefficient field e = Q, for geometry of local systems. Outside of §2, we have
k = F,. The geometry over k is classical algebraic geometry, while the algebraic geometry over e is derived.
We use higher categorical methods. Our DG categories are assumed to be enriched over e-vector spaces.

For an algebraic stack Y over k locally of finite type, we let Shv(Y) denote the DG category of e-sheaves
on Y (see [15] A.1.1 (d’)). We let qLisse(Y) < Shv(Y) denote the subcategory of quasi-lisse complezes as in
[2] Definition 1.2.6; these are objects whose (perverse, say) cohomologies are colimits of lisse sheaves (in the
usual sense).

We generally refer to co-categories simply as categories to simplify the terminology.

We let DGCatcony denote the category of cocomplete (and accessible) DG categories under continuous
DG functors. We consider DGCatcont as equipped with Lurie’s tensor product. We let Vect € DGCateont
denote the DG category of e-vector spaces, which is the unit for the monoidal structure.

For € a DG category, we let C° denote its subcategory of compact objects. When C has a t-structure,
we let @Y (resp. C<C, resp. €=°) denote the heart of the t-structure (resp. the subcategory of connective
objects, resp. the subcategory of coconnective objects).

We refer to [15] for background on categorical trace methods.

For H an affine algebraic group over e, we remind that there is a moduli stack LS}*" = LS)$*" (X) over
e of H-local systems (with restricted variation) on X. Recall that an H-local system is simply a t-exact
(equivalently: right t-exact) symmetric monoidal functor Rep(H) — qlLisse(X) (equivalently: a symmetric
monoidal e-linear functor Rep(H)¥>¢ — Lisse(X)%). Therefore, we define the stack LS)™ to parameterize
right t-exact symmetric monoidal DG functors Rep(H) — qlLisse(X); more precisely, the S = Spec(A) points
of LS} are the groupoid of right t-exact symmetric monoidal functors Rep(H) — A-mod(qLisse(X)).

Pullback along geometric Frobenius Frobyx : X — X defines a map LS} — LS$*" that we also call
Frobenius.* Tts Frobenius fixed points are by definition the stack LS%™™ which (tautologically) parameter-
izes right t-exact symmetric monoidal functors from Rep(H) to quasi-lisse Weil sheaves on X.

Finally, we always assume p = char(k) satisfies the (mild) assumptions from [2] §14.4.1.

1.5. Acknowledgements. I am grateful to Michael Harris for raising this question. I also thank
Sasha Braverman and Dennis Gaitsgory for their interest and for helpful conversations on this subject. I
thank Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Nick Rozenblyum, and Yasha Varshavsky for their
collaboration on this subject and to Vincent Lafforgue and Cong Xue for related discussions.

Finally, I thank the organizers of the 2022 Summer School on the Langlands program at IHES for the
invitation to speak and for their extraordinary patience with me while writing this article.

2. AGKRRV theory

We begin with a general overview of the works [2] and [4] and some of the background material.

These works are admittedly technical. We do not intend here to provide an overview of each bit of
the technical background needed for those works. However, we have tried at least to explain why certain
technical issues arise (e.g., the need for derived algebraic geometry). But in this vein, we freely appeal to

4Note that this map is a map of stacks over e. The Frobenius for LSl}?S“ can be thought of as a non-abelian/non-linear
version of Frobenius acting on the (e-vector space of) étale cohomology of X.
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foundational ideas in the subject that may not be familiar to all readers: stacks, DG categories, D-modules,
f-adic sheaves, and IndCoh stand out. Although these subjects are technical and not always widely known,
these days there are many references (and generous experts), and we think the interested reader should
readily find resources to pursue their interest in the background material that comes up in the discussion.

This section is structured as follows. First, in §2.1, we explain a bit how someone interested in auto-
morphic functions should regard about the de Rham (or D-module) geometric Langlands conjecture, and
we highlight some nice pleasant features of the latter subject in comparison with the former. In §2.3, we
explain the restricted geometric Langlands correspondence; one side involves moduli theory for ¢-adic local
sheaves, which we explain in §2.2. In §2.4, we explain how the story develops working over finite fields, when
Frobenius is considered. Finally, in §2.5, we describe how our main arithmetic result (from [4]) is proved,
emphasizing the key role played by Xue’s work on sheaves of shtuka cohomologies.

2.1. Arithmetic and geometric Langlands.

2.1.1. Arithmetic Langlands. Conventional arithmetic Langlands concerns automorphic representations,
which by definition are certain irreducible representations appearing in a suitable space of automorphic
functions.

A crude (and perhaps vulgar) form of the Langlands philosophy predicts that automorphic representa-
tions for G correspond to Langlands parameters for G. There are corrections that are not quite our emphasis
here: Arthur parameters should be used, L-packets appear, for number fields there is not a suitable definition
of Langlands parameter (or Langlands group), and so on. What is our emphasis is the atomic nature of
the conjecture: the basic objects are irreducible subquotients of a space of functions, not the function space
itself.

2.1.2. Geometric Langlands. By contrast, the conventional form of the geometric Langlands conjecture
predicts that:

(2.1) D-mod(Bung) = IndCohuiperec (LSE) ~ QCoh(LSHY).

In the above formula, IndCohypseee is a suitable enlargement of QCoh defined by Arinkin-Gaitsgory and
discussed a little more in §2.1.11.

Since the conference primarily concerns arithmetic aspects of the Langlands program, we digress for
some time to explain some starting features of the geometric setting, including the notation used above and
some ways of thinking about the main objects that appear there.

This form of the geometric Langlands conjecture is due to Beilinson-Drinfeld and Arinkin-Gaitsgory,
see [1] and [13] for an introduction to this circle of ideas. We will refer to it as the de Rham geometric
Langlands conjecture because the theory of D-modules remembers de Rham’s cohomology groups.

2.1.3.  The input for geometric Langlands conjecture is a smooth projective curve X /k for a fixed field
k. We assume k is algebraically closed to simplify certain points, although this is not fundamentally essential
in the de Rham setting.

Then Bung is the space of G-bundles on X. More specifically, Bung = Bung(X) is a stack whose
functor of points is given by:

Bung(S) := Hom(X x S,BG) = {G-bundles on X x S}

where S is an affine scheme and BG is the classifying stack of G. It is standard that Bung is a smooth
algebraic stack locally of finite type, although it is not quasi-compact.
A lovely formula due to Weil® says that:

(2.2) Bung (k) = G(F)\G(A)/G(O)

5This formula is essentially obvious once one knows that G-bundles are Zariski (not merely étale) locally trivial on smooth
projective curves. For G Ly, this follows from descent. For other groups, this is Steinberg’s theorem.

We remark here that the theorem also holds over finite fields, as is often implicitly taken for granted in the subject. For
simply-connected G, this is a theorem of Harder [19]. In general, one takes a surjection G’ — G with G’ having simply-connected
derived group and Ker(G' — G) being a (connected) torus; then G-bundles on X lift to G’ (by class field theoretic Brauer
group considerations), so we are reduced to Harder’s theorem.
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with O = ]—Ixex(k) O, the ring of integral adéles (for O, the ring of Taylor series based at = € X(k)),
A = colimge x (k) finite (] [peg Frac(Og) x [Tags O,) the similarly defined ring of adeles, and F' = k(X) the
field of rational functions on X. Therefore, we can think of Bung as a geometric avatar of the double quotient
space where unramified automorphic functions would live (if we replaced k by a finite field).

2.1.4. A foundational analogy in geometric representation theory says that when k is of characteristic
zero, the category of D-modules on a stack Y behaves like the space of functions on the set Y(Fy) of F,-points
of Y, if such a thing makes sense.’

There are several justifications of this idea. First, for k& = C, some D-modules are related to constructible
sheaves by the Riemann-Hilbert correspondence, which are in turn related to étale sheaves by the Riemann
existence theorem, which for k¥ = F, are in turn related to functions by the Grothendieck-Deligne sheaves-
functions correspondence.”

Alternatively, one can imagine that D-modules encode linear systems of differential equations whose
solutions define functions (or distributions) on Y(C), which are analogous to functions on Y(F,) for different
reasons.

In practice, it is important in this analogy to work with all D-modules on Y. For example, the Mellin
transform in this setting is an equivalence D-mod(G,,) ~ QCoh(A!/Z); it can be thought of as a simplified
toy model geometric Langlands-style equivalences. Under the Mellin transform, neither holonomic nor regular
holonomic objects on the left hand side have reasonable descriptions on the right hand side. One takes this
as a sign that one should work with the category of “all” D-modules in geometric representation theory
rather than a constructible sort of subcategory.

Moreover, by [24], for G = G,,, the equivalence (2.1) does not come from an equivalence of abelian
categories; that is, it is necessary to work with derived categories in this analogy. Per the modern under-
standing, we use DG categories in the homotopical formalism of co-categories; we generally abide by the
convention that our DG categories should have all direct sums and functors between them should be linear,
exact, and preserve direct sums. The advantage of the homotopical formalism is that it eases the founda-
tional burdens of the subject by introducing algebraic tools — we speak can fluently of monoidal categories,
module categories, tensor products, and so on most readily in this language.

EXAMPLE 2.1.4.1. Per the previous discussion, one considers D-mod(Bung) as analogous to the space
Aut?™ of unramified automorphic functions.

2.1.5. Let us pause a bit further to discuss the analogy between categories and vector spaces further.

The origin can be thought of as follows: for Y/F, defined over F,, a constructible Weil étale sheaf I on
Y gives rise to a function on Y(F,) by taking the trace of Frobenius on the fibers at rational points, giving
a fairly general procedure for producing functions from sheaves. This is the usual source of the analogy
between sheaves and functions.

One can say that functions on a space form a vector space, while sheaves on a space form a category, so
vector spaces (of functions) categorify to categories (of sheaves).

2.1.6. One can make the previous discussion more precise.

Fundamentally, the source of functions in the previous discussion was that if we have a (finite-dimensional)
vector space V with a linear transformation 7 : V — V| we can form try (7)) to obtain a number.

Similarly, for a (dualizable DG) category € with endofunctor T : € — €, there is a trace tre(T) € Vect
associated to this datum; we refer to [15] for a detailed discussion of this construction. We wish to highlight
that — besides (maybe serious) psychological barriers around categories — the general construction is quite
formal and mirrors the usual theory of traces.

2.1.7. 'We now turn to more closely interpreting the geometric Langlands equivalence.

6For example, the reader can imagine Y is defined over Z[1/N] for N prime to g. But I would encourage the reader not to
be so literal-minded on this point.

TWe refer to the first sections of [28] “Applications de la formule des traces aux sommes trigonométriques” for background
on this notion.
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The space LS%R = LS%R(X) is the moduli stack of de Rham G-local systems on X. In the field, the
stack LS (for H/k an affine algebraic group) is conventionally defined as having S-points:

LS (S) := Hom(X4r x S, BG)

where Xggr is the de Rham space of X. It would be too digressive here to discuss the de Rham space in
detail, but its key point is that QCoh(Xg4r) = D-mod(X).

Less conventionally, one can proceed as follows. First, at the level of k-points: what is an H-local system
supposed to be? We could take qLisse™(X) < D-mod(X) to be the subcategory of objects each of whose
cohomologies is a colimit of local systems, i.e., vector bundles with connections; this is a suitable derived
category of lisse D-modules, but we call them quasi-lisse to adhere to conventions from [2].

Then a de Rham H-local system is essentially a symmetric monoidal functor Rep(H) — qLissedR(X );
this is not quite right since for H = G,,, such a datum is a tensor-invertible object o of qLissedR(X ), i.e.,
a cohomologically shifted line bundle with connection; to remove that ambiguity, we refine our definition
by asking that our functor be right t-exact after a cohomological shift [1] (to account for the fact that the
functor sends the trivial representation to the constant sheaf ex, which is in degree dim(X) = 1). .%?

We note that this definition then behaves essentially as expected: a de Rham GL,-local system is a
rank n vector bundle on X with connection; a de Rham SO,,-local system is a rank n vector bundle & with
connection V and non-degenerate symmetric pairing € ®o, € — Ox preserving the connections; a de Rham
Span-local system is similar, but the non-degenerate pairing is anti-symmetric; a de Rham Ga-local system
is an octonion bundle with connection; and so on.

This Tannakian definition of local systems — which is perhaps the simplest way to define local systems for
general algebraic groups — adapts to give S-points for LS‘}IR: its S-points are symmetric monoidal functors:

(2.3) Rep(H) — D-mod(X) ® QCoh(S)

that are right t-exact up to shift by dim(X) = 1.

We suggest the reader turn refer to [2] §4.1 for further related discussion. We briefly note that any
symmetric monoidal functor Rep(H) — D-mod(X) lands in qLisse?™(X), although (2.3) will not generally
map into qlisse™(X) ® QCoh(S).

2.1.8. Needless to say: for a number theorist, LS‘};R is thought of as a moduli stack of Galois parameters.

Indeed, by (a very easy form of) the Riemann-Hilbert correspondence, for k = C, there is an analytic
identification of G-local systems with homomorphisms p : (X (C)) — G(C) up to conjugation (although
this does not work naively in S-families).

2.1.9. The next key piece of structure in the geometric Langlands conjecture is the spectral action.

This is the action of the monoidal category QCoh(LS‘éR) on D-mod(Bung) constructed in [?] by Drinfeld-
Gaitsgory. According to loc. cit., this action is uniquely characterized by its compatibility with (a suitably
strong version of) the Hecke action on D-mod(Bung).

Here we refer to [?] §1.1 for a discussion of the uniqueness and [?] §1.5 for the precise connection to
Hecke functors.

80f course, this issue arises only because of our insistence to work with derived categories, which the reader may take issue
with. In §2.1.12, we explain that it is necessary to use derived algebraic geometry in the story we are telling, so our affine test
schemes S should also be derived; the derived category QCoh(S) is sensitive to derived geometry but not the abelian category
QCoh(S)? is not.

In anticipation of these issues, we have made a pedagogical choice to stick with derived categories and right t-exact (up to

shift) functors.

9The reader might ask: right t-exact functors Rep(H) — qLisse®(X) are also t-exact (up to shift in both cases), so why
write “right” at all? The reason is that we will soon generalize this setting in (2.3). Say H is the trivial group there, so we
are talking about the symmetric monoidal functor Vect — QCoh(S), which sends k to ex [X] Og for ex the constant sheaf.
After shifting by dim(X), the latter is always connective (i.e., in cohomological degrees < 0), but it is only in the heart of the
t-structure if S is a classical scheme, i.e., an object of “usual” algebraic geometry and not derived algebraic geometry.
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2.1.10. The spectral action can be visualized as follows.
Let Y be any stack and suppose € is a module category for QCoh(Y). We draw this as a category fibered
over Y:

Cy

\
:

Here the fiber C, at y is defined as:

€y =€ ® Vect
QCoh(Y)

if y is a k-point; if it is an A-point, replace Vect with A-mod. Heuristically, we might write C = Syey Cy dy.
This formalism was studied in great detail in [14].

So informally, the Drinfeld-Gaitsgory spectral action says that the category D-mod(Bung) fibers over
LS%R, and that this structure is canonically defined by Hecke functors. Therefore, the existence of the
spectral action can be interpreted as a (categorical) reciprocity law for the category of automorphic sheaves
(a phrase that means D-mod(Bung), at least in this de Rham context).

By definition, the fiber D-mod(Bung), of D-mod(Bung) at a point o € LS%R is the category of Hecke
eigensheaves with eigenvalue o.

2.1.11. In the heuristic formula C = Syey Cy dy above, we imagine that we have a category-valued
measure Cy dy on Y. In cases of interest, we may wish to calculate it.

This is the job of the full geometric Langlands conjecture. The QCoh (LS%R)-module category IndCohygpspec (LS%R)
encodes an analogue of Plancherel measure under this metaphor.

Here the category IndCohygpspec (LS%R) of ind-coherent sheaves with nilpotent singular support was de-
fined in [1] and has been the subject of wide study in the field since then. It is a modification of QCoh of
geometric nature that reflects something about the singularities of LSdGR. We refer to [1] for an introduction
to this subject. We use Nilp®Pec < T*[—1] LS%R to denote the spectral nilpotent cone, remarking that it is
often denoted simply as Nilp in many other references.

Because irreducible G-local systems do not support non-zero nilpotent horizontal sections of their adjoint
bundles, we have:

QCoh(LSE"™)  ®  IndCohyipperec (LSE') = QCoh(LSE ™)
QCoh(LSIR)

(see [1] Proposition 13.3.3 for more details).

Under our analogy, this means that Plancherel measure is constant on L with value Vect. Near
reducible local systems, there is a correction relating to nilpotent horizontal sections of the adjoint bundle,
which are avatars here of Arthur’s SLs.

2.1.12. We now give a quick example illustrating some basic technical points.

Suppose X = P! and G = G,,,. Then Bung, parameterizes line bundles on P, so is isomorphic to
Z x BG,,: the Z-factor parametrizes degrees of line bundles while the BG,,-factor encodes the fact that
every line bundle on P! has automorphism group G, (suitably understood in S-families).

Therefore, D-mod(Bung,, (P')) = [],,.z D-mod(BG,,).

The category D-mod(BG,,,) can be calculated quite explicitly. Let 7 : Spec(k) — BG,,, be the structure
map, which we remind is a smooth covering. The functor 7' : D-mod(BG,,,) — D-mod(Spec(k)) = Vect is
evidently conservative and admits a left adjoint m. By base-change, the endofunctor 7'm of Vect is given
by tensoring with Cyqr(G,,), the de Rham homology of G,,. Moreover, by a simple form of Barr-Beck,
this endofunctor 7'm has a natural monad structure corresponding to the algebra structure on Car(Gn)

SdVR,lrred
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coming from the group structure on Gy,; moreover, the induced functor D-mod(BG,,) — C4r(G.,) is an
equivalence.

Finally, of course, Cqr(G,) is a DG algebra which is a square-zero extension of k by a single generator
7 in cohomological degree —1 (aliases: a symmetric algebra on a generator in degree -1; a homologically
graded exterior algebra on one generator) — this is just reflecting the elementary fact that homology of the
circle is 1-dimensional in degrees 0 and 1.

So we have:

(2.4) D-mod(Bung,, (P")) = | [ (k x kn)-mod.

nez

Naively, P! is a simply-connected, so has no non-trivial local systems, so one might expect LSdGR(Pl) to
equal BG (reflecting the non-trivial automorphism group of a trivial local system). For G = G,,,, we would
have QCoh(BG,,) = Rep(G,,) = [ [,z Vect, which is close to (2.4), but missing the generator in degree —1.

In fact, this is because we were too naive. The derived stack LS%R(Pl) equals'® BG x Ye BG, which for

G = G,, is just BG,, x (0 x a1 0). Here it is important the fiber products be taken in the sense of derived
algebraic geometry. Then we find QCoh(LS(g; (P1Y)) =[1,,cz QCoh(0 x a1 0). Finally, we note that 0 x 51 0 is

Spec of k®j[yk (the tensor product being derived, i.e., including the information of the groups Torf[t] (k,k)),
which is the same square-zero extension Cqr(G,,) we saw before.

We remark that the underlying classical stack recovers our naive conception of LS from before.

Alternatively, one can see the utility of derived algebraic geometry as follows. For general X and G,
standard arguments say that the tangent space of LSdéR at a G-local system o is H. éR(X ,00), the first de
Rham cohomology with coefficients in the adjoint local system of o. More generally, we should expect the
tangent complex to be Cyqr (X, §,)[1]. As the above example illustrates, this formula is only possible in
general when LS%R is interpreted as a derived stack.

In summary: we use derived algebraic geometry in the spectral side of geometric Langlands because it
produces right answers (unlike classical algebraic geometry) and because it yields more manageable infini-
tesimal geometry of moduli spaces.

2.1.13. Conclusion. Above, we briefly discussed arithmetic Langlands and gave a lengthier introduction
to (de Rham) geometric Langlands.

There is a key difference, which §2.1.1 already hints at: in arithmetic Langlands, we study atomic objects
(irreducible representations), whereas in geometric Langlands we study molecular objects (an analogue of
the space of automorphic functions). One may compare the situation with the Fourier theory on the circle
S1: the atomic theory says (necessarily unitary) characters of S! are in bijection with Z, but the actual
Fourier theory says L?(S%) is a direct integral over Z of 1-dimensional Hilbert spaces (i.e., L?(Z)). In the
automorphic theory, an analogue of the latter would be desirable, but the former is all we can access.

One starting point for [2] is an attempt to resolve this discrepancy, at least for function fields, at least in
the everywhere unramified case. In the end, we end up with an arithmetic perspective closer to the geometric
Langlands conjecture.

I wish to emphasize: our work is not the only one working on bridging this gap; [32] and [11] are closely
related efforts, and we all were inspired by V. Lafforgue’s breakthroughs [22].

2.2. Local systems with restricted variation: an introduction. There is an old desire to have
some kind of geometric Langlands for ¢-adic sheaves instead of D-modules. One side is easier to imagine: we
should consider (certain) ¢-adic sheaves on Bung instead of D-modules on Bung. The spectral side (i.e., the
LS-side) has been less clear, but the relevant geometry was developed in [2]. We now summarize the story.

2.2.1. What is the problem? Suppose now that k is an algebraically closed field and X is a smooth
projective curve over k. We let e := Q.

We wish to imitate the general geometric Langlands story, but understanding local systems as lisse étale
e-sheaves rather than vector bundles with connection. What goes wrong?

10T his formula comes e.g. from thinking of a local system on P! as a pair of local systems on the two standard open Al’s
in P! with an isomorphism on their intersection A1\0. We note that A is contractible, not just simply-connected.
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First, let us be maximally optimistic: we wish to have a stack LSg = LS‘ét (X) that behaves like our
earlier stack LSdéR from before. Suitably understood, its points should be G-local systems, i.e., right t-exact
symmetric monoidal functors Rep(G) — qLisse(X) — here qLisse(X) < Shv(X) = Shv®*(X) is understood in
the étale sense, as in §1.4.

As a preliminary step, note that the automorphism group of the trivial G-local system on X is G(e).
This suggests that LSég should be defined over the field e and contain a copy of BG corresponding to the
trivial local system.

REMARK 2.2.1.1. Here we see a basic bifurcation in the algebraic geometry of the geometric Langlands;
some objects, like X, G, Bung, etc. live over the ground field k, but spectral objects, like G, Lsg), etc.
live over the coefficient field e. For the de Rham theory, the coefficient field is the ground field and this
distinction can be ignored.

2.2.2. Now let us suppose k has characteristic 0 and X has genus g > 0. )
Ignoring technical issues (stackyness, derived structures), we might first guess that Lng would be

something like G29 over the field e. After all, the étale fundamental group of X has abelianization 729,
Moreover, one can see that (neglecting the same technical issues), the stack LSCCI;FS“ over C is complex ana-
lytically isomorphic to G29(xBG,, x 0 x 51 0).

However, the difference between Z and 7 is key here. In point of fact, continuous homomorphisms
729 — e* are indexed by points in (0F)?9 where O, C e is its usual valuation subring of integral elements.
In other words, our hope LSe&im = G2(xBG,, x 0 x o1 0) ~ G29 was too naive: the right hand side has too
many points over e!

Note that it is hard to find an interesting!! scheme over e with e-points OX. So we give up on a nice
stack (say, connected and algebraic) LS'%m existing.

2.2.3. One the other hand, deformation theory of étale local systems (alias: Galois representations)
is an old story. Usually one considers torsion coefficients, but we need not do so here. The basic point is
that for an étale local system o, we have a DG Lie algebra Cg (X, §,), so has an associated formal moduli
problem (see [25] Chapter 13 and [18]).

In other words, although we gave up on LS% existing, we do know its e-points (which are local systems
after all) and we do know its formal completion at each such point.

So at the moment, to form some approximation to LSeg, we can take a (typically uncountable) disjoint
union of the “formal completions of LS‘E{” at each e-point o. This gives the right answer for G,,, but we
will construct something a little better for other groups (as will be discussed in the remainder of §2.2).

2.2.4. The definition. In [2], we define a prestack over e (i.e., functor from connective commutative e-
algebras to oo-groupoids, i.e., moduli problem) called LS'$*" for any affine algebraic group H/e. In general,
it remembers a little more than just formal neighborhoods of points, as we will see.

The definition is a naive imitation of (2.3); by definition, an S-point of LS)*" is a right t-exact symmetric
monoidal functor:

Rep(H) — qgLisse(X) ® QCoh(S).

REMARK 2.2.4.1. To make this definition appear more concrete, let us explain what the right hand side
is without using tensor products of DG categories. Suppose C is a DG category, which we remind has all
colimits. Suppose S = Spec(A). Then € ® QCoh(S) = € ® A-mod = A-mod(C), i.e., an object of € with an
action of A. So the right hand side is reasonably concrete — the complexity is about the same as that for
A-mod.

2.2.5. What do we get? The above is a formal definition. It remains to justify that we have given a good
notion, where the meaning of this phrase will become more refined as we proceed.

HHere is an example that is not interesting: ]_[Ox Spec(e). In the case of G, LSES will differ from this answer in
2 m

stackiness and (possibly cohomological) nilpotents (besides replacing O by (O& )29, of course).
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2.2.6. Example: the additive group. First, suppose H = G,.

We claim that in this case, Ls‘gfj‘“ actually “looks the same” as in the de Rham case! More precisely,
we will show that LSE™" is the algebraic stack corresponding to the complex Cg(X)[1], i.e., it is (non-
canonically'?) isomorphic to BHY, (X) x H} (X) x QHZ (X) (where QHZ (X) is defined as the derived scheme
0 x H2,(X) 0). One can see (e.g., via the following analysis) that the same holds in the de Rham setting, but
with de Rham cohomology replacing étale everywhere.

To see this, let triv € Rep(G,) be the trivial representation, i.e., the tensor unit. There is a canonical
map triv — triv[l] € Rep(G,) corresponding to the standard 2-dimensional representation (} 1) of G,
(considered as a non-trivial self-extension of the trivial representation).

Now for € a symmetric monoidal DG category and F : Rep(G,) — € a symmetric monoidal functor,
we can apply F' to the extension class above to obtain a map 1e¢ — 1¢[1], i.e., a point in the (o0o-)groupoid
Home(le, 1e[1]) = Q®° 'Ende(le).*? Tt is easy to see' that this gives an isomorphism of groupoids:

Homcomalg(D6Cateon ) (REP(Ga), €) — Home (1, Le[1]).
Taking € = qLisse(X) ® QCoh(S), we see that S-points of LS*" equal:
O (Homg e x) (€, €x [1]) ® Homgeon(s) (Ox, Ox)) = 7 Cer(X)[1] ® T (S, 05))

for ex the constant sheaf on X. Up to unwinding the formalism, this proves the claim.

2.2.7. Example: the multiplicative group. Here we simply state the outcome:

The space LSréitLr is an ind-algebraic stack. It is a disjoint union of its connected components, each of
which is (again non-canonically'®) isomorphic to BG,, x HZ (X)§ x QHZ(X). The connected components
of LSrCfi:r are in bijection with its e-points, which we remind are just the rank 1 lisse sheaves on X.

2.2.8. What is the toolkit? This material can be ignored. For the reader’s convenience, we describe the
general recipes for proving things about LS.

First, we need to probe the underlying classical stack, ignoring issues about derived algebraic geometry.
For this, we let IIx be the Tannakian group attached to the Tannakian category qlisse(X)Y, so Ily is a
group scheme over e with a symmetric monoidal equivalence Rep(ITx )Y ~ qLisse(X)".

For classical schemes, S-points of LS¥™" are canonically in bijection with maps Iy x S — H x S of
group schemes over S, considered up to conjugation (where we quotient in the groupoid sense) — see [2]
Proposition 2.5.9 (though the assertion is essentially Tannakian duality plus bookkeeping). This allows us
to study the underlying classical prestack of LS}5*"" using tools from the theory of algebraic groups.

We then extend to derived schemes using deformation theory, which is simple to compute for LS
see [2] §2.2.

EXAMPLE 2.2.8.1. Let us illustrate the first technique in an example.

The earlier assertion that LSréftr is a disjoint union of “fat points” from §2.2.7 amounts to saying that
for any algebraically closed field extension €’/e, a map S = Spec(e’) — LSrcii':‘r factors through an e-point.
This becomes a general assertion about group schemes: a map IIx x S — G,, x S comes from a map defined
over e. As G, has finite type, this reduces to the same assertion with IIx replaced by an affine algebraic
group I' (i.e., a finite type quotient of IIx), which we can even assume is abelian. Here the assertion is
evident from the representation theory of commutative algebraic groups.

n

12WWe have in effect chosen a formality isomorphism for Cey(X)[1].

1376 clarify for the reader who is not versed in this material: for a spectrum V' (or complex of k-vector spaces), 2%V means
“take the underlying co-groupoid” — at least for connective spectra/chain complexes, this is analogous to taking the underlying
set of an abelian group, and in general, one can think of it as “pass to the connective cover and then take the underlying
homotopy set.” In explicit set-theoretic models, we might take a chain complex V'* of Z-modules, truncate to obtain 7<°(V'®),
and then pass to the corresponding simplicial abelian group (hence simplicial set) under Dold-Kan.

The notation Q%®~1 (V) simply means Q®(V[1]).

Namely, one simply uses that there is a standard symmetric monoidal equivalence between Rep(Gg) and modules over the
commutative algebra e x e[—1].

15Here is a recipe to construct the component more canonically. First, take Lsgi" and formally complete it at the trivial
Gy-local system. The resulting stack receives a homomorphism from BG/} = BG}), (here we use the exponential); then pushout
along the map to BG,.
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2.2.9. Structure of LS™"™ in general. We hope the following results will contain no surprises at this
point.

First, LS} is always a formal algebraic stack. More precisely, if one maps LS'$™" = LS} (X) —
BH = LS}*" (Spec(k)) by taking the fiber at a k-point in X, this map is representable in indschemes, and
even better, in indschemes that are disjoint unions of formal schemes — see [2] Theorem 1.4.5.

Second, the connected components of LS}*"" are in bijection with semi-simple H-local systems up to
equivalence. Informally, two points of LS}®" lie in the same connected component if and only if their
semi-simplifications are infinitesimally close. See [2] Proposition 3.7.2 for a precise statement.

Finally, if we imagine LSS+ existed, then for each semi-simple o, there would be a closed substack LSe}}’U of

local systems with semi-simplification o; LS'$™" is then morally the disjoint union of LS‘}} formally completed
at each such LS‘}})U. For more precise assertions in the Betti and de Rham settings, see [2] §4.

2.3. Restricted geometric Langlands. We briefly discuss our main conjecture in the subject.

2.3.1. Let Shvyy;p(Bung) < Shv(Bung) denote the subcategory of sheaves with singular support in the
nilpotent cone. Here singular support of étale sheaves was defined by Beilinson in [5].

In the Betti setting, Ben-Zvi and Nadler [7] said that sheaves with nilpotent singular support are the
right object to study (one finds a precise theorem justifying this idea in [2] Theorem 18.1.6). We mimic this
principle in the étale setting, conjecturing:

CONJECTURE 2.3.1 (Restricted geometric Langlands conjecture). There is an equivalence Shvy, (Bung) ~
|ndCOhNilp5pec (LerVestr)‘

Here the right hand side is defined as in the de Rham case.
REMARK 2.3.1.1. One can find a simplified version of this conjecture in [23] Conjecture 6.3.2.

REMARK 2.3.1.2. Of course, Conjecture 2.3.1 is subject to many compatibilities. The compatibility
with Whittaker coefficients, (a mild form of) the compatibility with Eisenstein series,'® and a version of [10]
Theorem 8.3.0.1 uniquely determine the comparison functor in Conjecture 2.3.1; in the de Rham and Betti
settings, this idea is the subject of [16].

2.3.2. Evidence. When the geometric field k has characteristic 0, we show in [2] that the restricted GLC
follows from the de Rham geometric Langlands conjecture.

In general, one can directly verify the conjecture for G = Gy, and using similar ideas as in [21], one
can reduce the conjecture to derived Satake for X = P!.

2.4. Frobenius. We now discuss what happens when we include Frobenius.

2.4.1. Now suppose the ground field k is Fq. Suppose X is defined over F; as G is a priori defined over
Z, it follows that Bung is naturally defined over F, as well. Recall that rational structure can be encoded
in the geometric Frobenius endomorphism of X (resp. Bung).

Therefore, there are Frobenius automorphisms (namely: pullback along geometric Frobenius) acting on
Shv(X), qLisse(X), and Shv(Bung).

By definition of LS'$™"", the Frobenius automorphism of qLisse(X) induces a “Frobenius” automorphism
of LS,

EXAMPLE 2.4.1.1. Suppose H = G,. By §2.2.6, LSE™"" is a geometric avatar of the chain complex
Cet(X)[1]; this complex carries its own standard Frobenius automorphism, and the two tautologically match
under this dictionary.

In general, the Frobenius on LS%*™ might therefore be thought of as a non-linear analogue of the
Frobenius on Cg (X).

163ee [13] for formulations of both Whittaker and Eisenstein compatibilities.
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2.4.2. We define LS%"™ as the Frobenius fixed points of LS
More precisely, we have a Cartesian diagram:

Lsegthm Lsxﬁstr

| |

s A s s
Lsrl_}estr Lsﬁstr x Lsﬁstr

of formal derived stacks where the arrow on the right is the graph of the Frobenius map.

Note that e-points of LSZTZT“ are rank n lisse Weil sheaves on X. More generally, we think of L
as the stack parametrizing continuous homomorphisms from the Weil group Wy to the algebraic group G, /e,
considering these homomorphisms up to conjugacy. Said more neatly: LSaG,vrthm is the stack of unramified
Langlands parameters for the global field Fy(X).

arthm
Sa

REMARK 2.4.2.1. Let qLissed’(X ) denote the DG category of quasi-lisse Weil sheaves, which by definition
are the fixed points of the Z-action on qLisse(X ) coming from Frobenius. Tautologically, LS?;thm parametrizes
symmetric monoidal functors Rep(H) — qLisse?(X) in the same way that LSS parametrizes symmetric
monoidal functors Rep(H) — qLisse(X) (i.e., S-points of LSH™™ are right t-exact symmetric monoidal
functors Rep(H) — qLisse(X) ® QCoh(S)).

However, qlisse”(X) has different categorical properties than qlisse(X). For example, qLisse?(X)" is
not a Tannakian category. This leads to some formal differences between the two settings, with LS%thm
behaving more like the moduli of Betti local systems in some regards; e.g., it turns out ([2] Theorem 16.1.4)
that LSH™™ is a (non-formal!) algebraic stack that is quasi-compact (and in particular: has finitely many
connected components!).

REMARK 2.4.2.2. We do not try to provide more explicit pictures in this section, beyond commenting
that the geometry of LSZfthm is more complicated than its restricted counterpart. But in Theorem 4.3.3.1,
we give coordinates on a patch of LS%rthm containing the trivial representation, providing some bit of explicit
analysis of its geometry.

2.4.3. Essentially by Remark 2.3.1.2, any restricted geometric Langlands equivalence must be compat-
ible with Frobenius automorphisms on both sides.

Recall the notion of categorical trace alluded to in §2.1.6: it takes (dualizable) DG categories with
endofunctors and produces vector spaces.

We can then take the trace of Frobenius on both sides of the restricted geometric Langlands equivalence.
As outlined in [2] §16, the trace of the Frobenius on IndCohxipspec (LSE5™™) is the same as on IndCoh(LSE™),
which is:

T(LSE™™, w)

for w the dualizing sheaf on LS*gthm,
On the other hand, the main theorem of [4] calculates the trace of Frobenius on Shvyy;,(Bung) as:

Autgry.
Using (2.2), one can interpret this as a higher categorical version of the sheaves-functions correspondence

(albeit in a special case, not as a general geometric phenomenon).
2.4.4. We end up with the arithmetic conjecture:

Autg =~ 1"(LSg”‘hm7 w).

As in the introduction, the vector space on the left is that of unramified automorphic functions, i.e.,
compactly supported functions on Bung(F,). In particular, unramified cusp forms sit in this space.
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2.4.5. There is a canonical map 7 : Opgarthm — Wy garem encoding a “weak Calabi-Yau” structure on
G G

LS‘”&rthm — see §4.6.5 for more discussion.
In particular, there is a natural map from functions on LSZ{thm to the right hand side I’(LS‘gthm,w)
above. One should think of Arthur’s SL; as measuring the difference between O and w on LS*gthm.

EXAMPLE 2.4.5.1. Suppose o € Lsgthm is a smooth, isolated point of this stack. (Such o are called

an elliptic or discrete Langlands parameter.) Then one can see that 7|, is an isomorphism. Therefore, our
conjecture predicts that there is a 1-dimensional space of unramified automorphic forms corresponding'” to
ag.

2.5. Xue’s theorem and the Frobenius trace.
2.5.1. Above, we said that:

(2.5) tr(Frobg,,..» Shvaip (Bung)) ~ Aut™

was the main theorem of [4]. We briefly indicate how this is proved. They key role is played by Xue’s
theorem from [31].

One can also turn to the introduction of [4] for an overview of the argument. Our summary is not so
different here, except we try a little harder to sweep Beilinson’s spectral projector under the rug (maybe to
the detriment of the discussion).

2.5.2. Step 1. One lesson from Drinfeld’s work!® on the Langlands correspondence is that it is generally
helpful to consider automorphic functions Aut;"" as special cases of sheaves of shtuka cohomologies.

We briefly review the story. The shtuka construction takes a finite set I, a representation V € Rep(G'),
and yields a sheaf Sht; - € Shv(X7). Namely, attached to the data of I and V, one has a Hecke functor:

Hy : Shv(Bung) — Shv(Bung x X7).

This functor comes from a naturally defined kernel Ky € Shv(Bung x Bung x X7). We remark that geo-
metric Satake plays a key role in the construction, and we refer to [22] or [4] for more details on the
construction.

Then Sht; v is obtained by #-pulling back Xy along the graph of Frobenius:

I Graphg,, X id 1
—_— Trop T X

Bung x X Bung x Bung x X!

and then taking compactly supported cohomology along the Bung factor, i.e., !-pushing forward to X’.

For example, when I = ¢J (and V is the 1-dimensional representation of the trivial group), Xy =
Ai(eBung ), so by base-change, the above computes Cg;o(Bung(Fy)) = AutE™.

There are natural morphisms between shtuka cohomology sheaves. First, for I fixed, the above con-
struction yields a functor Sht; : Rep(G') — Shv(X'). But we can also vary I; more precisely, the
symmetric monoidal structure on Rep(G) maps the assignment I — Rep(G!) = Rep(G)®! into a functor
fSet — DGCatcont (for fSet the category of finite sets); #-pullback along diagonal morphisms makes the
assignment I — Shv(X7) into a functor fSet — DGCatcon; as well. Then standard functoriality properties of
geometric Satake say we have a natural transformation:

Sht : (I — Rep(GT)) — (I — Shv(XT))

of functors:
fSet — DGCatcont.

This functoriality is a key property of shtuka cohomologies, and its existence encodes key symmetries of
automorphic functions: V. Lafforgue used exactly this functoriality in [22] to construct excursion operators.

1TWe are being sloppy about what “corresponding to” means here. To be more precise, our conjecture combined with the
discussion of [2] §24.2 implies that there should be a 1-dimensional space of unramified eigenforms for the action of V. Lafforgue’s
excursion algebra with the eigenvalue being that defined by o. As is well-known, for general G, Hecke operators alone are not
enough to pick out a 1-dimensional eigenspace.

18The perspective discussed here for general reductive groups is from [29].
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2.5.3. Step 2. We now similarly generalize the other side of our theorem, which we remind is trsp, . ,,, (Bune) (Frob).
The answer should input V € Rep(G') and yield a sheaf on X!, which we will ultimately denote by Sht}'y,.
Of course, the construction should involve Hecke functors and Shvy,(Bung), so we presently digress to
discuss the latter subject for a moment.

Following [27] in the topological setting, we show in [2] Theorem 14.2.4 (and its subsequent discussion)
that for V € Rep(G'), the Hecke functor Hy maps Shvaiip(Bung) < Shv(Bung) into Shva,(Bung) ®
glisse(X7) < Shv(Bung x X71).

Moreover, we prove a converse as well: in loc. cit. Theorem 14.4.3, we show that for ¥ € Shv(Bung)
with Hy (F) € Shv(Bung) ® qLisse(X) for all V e Rep(G), one necessarily has F € Shvy,(Bung).

So we summarize with the motto: Shvii,(Bung) can be regarded as the subcategory of sheaves F whose
Hecke transforms Hy ,(F) are locally constant as we vary the point x € X.

This perspective on Shvyy,(Bung) is actually the better one for almost?? every result in the AGKRRV
series. (From one point of view, this is why it is important to introduce Hecke functors and general shtuka
sheaves into our present analysis: Shviyy,(Bung) itself is best understood using the Hecke action.)

2.5.4. Step 3. By the above, for V € Rep(G), we have a Hecke functor:
Hy : Shvaiip (Bung) — Shvai, (Bung) ® qlisse(X 7).
We can precompose this functor with the Frobenius on Bung to obtain:
Hy o Frobpun,, : Shvai,(Bung) — Shva, (Bung) ® qLisse(XI).

We can then take the trace along®' Shvayy,(Bung) to obtain an object of qLisse(X”). This is the desired
object Shty'y .
Our goal in what follows is to show that we have functorial identifications:

(2.6) Sht{'y, ~ Shty v [2[1]]

where the cohomological shift occurs for technical reasons that will appear below. The case I = ¢, V
1-dimensional now recovers (2.5) in concise notation.

2.5.5. Step 4. Observe a difference between Sht?v and Sht;y: for essentially geometric reasons, Sht!"
takes values in qLisse(X?) < Shv(X7), but this is not apparent for Sht; itself.

In [3], we introduce methods for calculating traces on Shvyy;,(Bung). We refer to loc. cit. for details,
but the summary answer is that traces can be computed using general geometric ingredients (upper-* and
lower-! functors) plus a specific ingredient from (geometric) representation theory. The latter is Beilinson’s
spectral projector, whose job (for our purposes) is to take compatible (over I) systems of functors 8; :
Rep(G') — Shv(X') and produce a compatible systems A8; : Rep(G') — gLisse(X 7).

At an imprecise, top level view, the recipe from [3] produces the following answer: the system of functors
Sht'" is the best approzimation to the system of functors Sht; that takes values in qlisse(X') rather than
Shv(X7), i.e., it is A Sht;.

Then Xue’s theorem [31] says that Sht; itself takes values in qLisse(X '), so ASht; coincides with Sht;
itself, so we obtain (2.6).

2.5.6. Step 5. The above is morally correct, but we now fix one lie. The discussion that follows can be
compared with [4] Remark 3.2.6.

The functors Sht; are compatible under upper-* functors as we vary the finite set I. However, the
procedure of applying the spectral projector applies for a system of functors 8; compatible under upper-
| functors. So we need a variant Sht' of the shtuka functors that are suitably compatible under upper-!
functors.

19Technically7 there are minor restrictions on the characteristic of the ground field in this assertion. Recall from §1.4 that
we always neglect these small characteristics, and we implicitly assume we are away from these characteristics in our discussion
here.

20The main exception is the Kiinneth formula from [2].

21This is analogous to saying that if we have a linear transformation W7 — Wi ® W2 with W; finite-dimensional, we have
a corresponding vector in WY @ W1 ® Wa, and we can pair along the first two factors to obtain a “trace along W1” that is a
vector in Wa.
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The relevant functors Sht!,’_ : Rep(G') — Shv(X') are characterized by the formula:

!
(2.7) Co(X!,Sht}  ®F) = Co(Bung x X7, (Frob x id)*(Xy & pi ()

for ps : Bung x Bung x X! — X7 the projection.??

A priori, the result from [3] actually implies is that {Sht} } refse: is the best approximation to the functors
{Sht!l} Iefset taking values in the subcategories qlisse € Shv.
The logic then proceeds by applying Xue’s theorem twice. First, this theorem tells us that Sht!“, =

Shty v [2|1]] (where 2|I| appears as 2 dim(X 7)) — namely, we simply substitute Sht; y/[2|]] in place of Sht!I)V

in the left hand side of (2.7), and then we apply the identity § (>'§ F=9 (:2) F[—2dim] for § being lisse to
(functorially) manipulate the resulting expression into the right hand side of (2.7). In particular, Xue’s
theorem then implies Sht!l,v takes values in gLisse, so the previous paragraph implies Sht} = Sht!I, which
we just saw also equals Shtr[2|I]], as desired.

3. Spectral Eisenstein series

We now begin working toward Theorem A. For the remainder of the paper, we assume k = F,.
Our goal in this section is to define and study a certain map:

Eis*P°° : F(Lsgfthm,wLSaTm,m) - F(Lsgthm,wm?hm).

Throughout this section, we only consider (pre)stacks locally almost of finite type; we omit further
mention of this hypothesis.

3.1. Automorphic Eisenstein series. We begin by reviewing some constructions regarding geometric
Eisenstein series and their function-theoretic counterpart, the pseudo-Eisenstein series. We will later wish
to find counterparts of these constructions on the spectral side.

3.1.1. First, we have a canonical functor:

Eis; : Shv(Buny) — Shv(Bung)

defined by #-pullback along Bung — Buny followed by !-pushforward along Bung — Bung.
By the Hecke property for Eis established in [6], and [2] Theorem 14.4.3 (the “converse to the Nadler-Yun
theorem,” cf. §2.5.3) , we find:

PROPOSITION 3.1.1.1. The functor Eis; maps qLisse(Buny)(= Shvyip, (Buny)) to Shvag,(Bung).

unr

3.1.2. Pseudo-Eisenstein series. Let ps-Eis : Autpy — Autg’y be the pseudo-Eisenstein map. By
definition, this is the composition:

Auty’y := Fun.(Buny(F;)) — Fun.(Bung(F,)) — Fun.(Bung(F,)) = Autg’,

given by first restricting (noting that the fibers of the map Bung(F,;) — Bunp(F,) are finite) and then
summing along the fibers of the map Bung(F,;) — Bung(F,) (which is well-defined because we consider this
on functions with finite support).

3.1.3. Compatibility of the two. The functor Eis) obviously intertwines Frobenii and preserves compact
objects, so we may pass to traces of Frobenius to obtain a map:

tr(Eis) @ trqLisse(Buns) (Frob) — trspy ., (Bung) (Frob).

By the main theorem of [4], we have isomorphisms:

unr

(3 1) tquisse(BunT)(FI‘Ob) = ‘AUtT,c

unr

trSthm‘,(BunG)(Fr()b) = ‘AU’tG,c

22 notational remark: our notation is inconsistent with [4]. The collection of functors we now call Sht!I are neatly packaged
in the single functor called Sht in [4], although the functors we call Sht; here are denoted in the same way in [4]. They differ
only by shifts by Xue’s theorem.
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so tr(Eis)) corresponds to a map:
unr unr
Autpls — Autgl.

By?® [4] Theorem 5.2.3, the isomorphisms (3.1) are given by a version of the sheaves-functions corre-
spondence; it follows formally that we have a commutative diagram:

tr(Eis;)
tquisse(BunT) (FI'Ob) tI‘Sth“p(BunG) (FI‘Ob)
(3.2) lx lz
Autr peEis Aut,

In other words: the trace of geometric Fisenstein series is the pseudo-FEisenstein series.

3.2. Some general constructions. Until further notice, we work exclusively over the field e.

Below, we give general a construction of Eis®°® in a general stack-theoretic context.

3.2.1. Terminology around stacks. Recall the technical notion of a QCA stack from [8]: this term refers
to an algebraic stack Y that is quasi-compact with affine diagonal. For any such QCA stack Y, [8] Theorem
0.4.5 asserts that IndCoh(Y) = Ind(Coh(Y)). Moreover, by [8] §3, there is a good theory of pushforwards for
ind-coherent sheaves on QCA stacks.

Also, we recall the notion of ind-algebraic stack from [2] §5.2. We remind that a prestack Y is ind-
algebraic if it is convergent and for every n > 0 its n-truncation <Y can be written as a filtered colimit of
n-truncated algebraic stacks Y; under closed embeddings. We say Y is ind-QCA if the terms Y; can moreover
be taken to be QCA.

Our main example is LS}*"" for H an affine algebraic group. According to [2] Corollary 5.2.6, LS} is
ind-algebraic; moreover, the proof of this result shows that LS} is in fact ind-QCA.

By the above theorem of Drinfeld-Gaitsgory, any ind-QCA stack Y has IndCoh(Y) being compactly
generated. Again, there is a good theory of IndCoh-pushforwards for morphisms between ind-QCA stacks.

3.2.2. Below, we fix f:Y — Z a l-representable?* map between ind-QCA algebraic stacks.

Suppose in addition that we are given automorphisms ¢y : Y — Y and ¢z : Z — Z intertwined by f
(i.e., we are given an identification ¢ o f ~ f o ¢y). We sometimes omit the subscripts and simply write ¢
for either ¢y or ¢z.

We form the fixed point stack Y (resp. Z?) of ¢. Explicitly, this is the equalizer Eq(Y % Y), which can

Graphd, A . .
Y xY <—Y. By assumption, we have an induced map

also be written as the Cartesian product of Y
Y® — 2% that we denote by f¢.

Below, under suitable hypotheses, we will construct canonical maps between I'(Y?, wys) and I'(2?, wqs ).

We have structured the discussion as follows. In §3.2.3 and §3.2.4, we have given “elementary” construc-
tions of these maps using standard functoriality properties of IndCoh. The latter construction in particular
is somewhat involved. Afterward, we explain a conceptual framework (functoriality of traces) for these con-
structions that makes their existence obvious. The author thinks about these maps using the latter point of
view, but fears the reader will not trust the magic if concrete descriptions are lacking; the reader who does
not need such convincing can skip past §3.2.3-3.2.4.

We also remark that the ind-QCA assumption is overkill. It is not needed in §3.2.3. It is used mildly in
§3.2.4 for the existence of various pushforward functors, though weaker hypotheses suffice. Fundamentally,
this hypothesis is natural from the more conceptual perspective of traces to ensure compact generation
(hence dualizability) of IndCoh.

23We remark that loc. cit. is conditional (even in its formulation) on a certain technical hypothesis on Shvyy;;,(Bung); see
[4] §5.1. This hypothesis was recently verified by the author and Gaitsgory and will appear in forthcoming work.

241 e., the fibers are algebraic stacks. Specifically, for every S € AffSch and S — 2, the fiber product Y x4 S is an algebraic
stack. In our context, this condition rules out a map like Y — Spec(e) unless Y is an actual (as opposed to ind-)algebraic stack.
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3.2.3. Pushforward. First, suppose that the map f is representable and proper. In this case, we will
construct a map:

(33) FIndCoh (1é¢>7 le(b) _ FIndCoh(Zd)7 wz(b).

In fact, this is quite easy. In this case, the map f¢ : Y® — 2 is also proper (and representable),?® which
is all we will need below.

Then f2'"4%°" is left adjoint to ', so we obtain a canonical adjunction map f'"™" %! - id. This
yields a map f£""" (wys) — wys; applying TN (29 ) gives the desired map (3.3).

REMARK 3.2.3.1. The map (3.3) is ['(2?, Oz )-linear.

3.2.4. Pullback. Next, suppose that f is eventually coconnective (and 1-representable). In this case, we
will construct a map:
(3 4) I—xlndCoh(qu’ de’) N FIndCoh (%¢,Wlé¢).

First, note?® that fIndce" . IndCoh(Y) — IndCoh(Z) admits a left adjoint f*'m4h in this case. We have
base-change between #-pushforwards and #-pullbacks (with the latter being only considered for eventually

coconnective morphisms).
In this case, we have a natural transformation:

(id Xf)*’lndCOh(id ><¢z,)|,:dC°h(id Xf)!:dCOh _
(id x f)*!M9ON (id x f)79N (id x gy ) Y9N — (id x ¢y ) §9“" € End(IndCoh(Y x Y)).

coming from adjunction. Applying this map to AN (), we obtain a canonical map:
(3.5) (id x f)*'"9%" Graphf¢Se", (wy) — Graphy, ,(wy) € IndCoh(Y x Y).
Here for a map g : S — T', the map Graph, : S — S x T is the graph morphism, i.e., Graph, := (id xg) o Ag.

Let wy denote the canonical map Y¢ — Y sending a pair (y € Y,y ~ ¢2(y)) to y, and similarly for ws.
Below, we will construct a canonical isomorphism:
(3.6) A (id x f)* I GraphJIS, (wy) ~ f*ndCenglrdCoh (w, ;) € IndCoh(Y).
Assuming for a moment that this construction has been given, we obtain a canonical map:

f*""dc°hwlzndf°h (wge) — A; Graphm“*(wy) € IndCoh(Y)

by applying Aij to (3.5). By adjunction, this yields a canonical map:

,wlznd*Coh( ) flndCohA‘d Graph% *( ) ~ LndCoh,w;d*Coh (wy¢) c IndCoh(Z)

Here we have used the base-change isomorphism Ay Graphg';’g?h ~ wld“dc°hwy Now applying the global

sections functor "N (2 —) to both sides above, we obtain the desired map (3.4).
It remains to give the isomorphism (3.6). First, the Cartesian diagram:

Graphy_
y Pzl y o
lf lfxid
Graph
A SN AN}

gives a base-change isomorphism:
Graphld?gg;t'* (wy) =~ (f x id)" Graph'"dc°h( 2)-

P2,k

This now yields:
Ay (id x f)*!"99" GraphfdSS", (wy) ~ A} (id x £)* N (f x id)' Graphf?" (wz).

P2 ,%

25Indeed, because f is representable and separated, the morphism Y¢ =Y XyxylY = Yxgzx2Yis aclosed embedding. Clearly
the further projection Y x 242 Y — Z Xy 42 Z = Z? is proper.
26This, and other similar assertions in this section, formally reduce to the results of [17] Chapter 4 §3.
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We have?” (id x f)*IndCoh( £ id)' ~ (f x id)'(id x f)*!"4C°" 5o we can rewrite the right hand side above as:

Aid(f % id)!(id >(Jc)*,lnd(:oh GraphlndCOh (CUZ,) _ Gra,ph‘;’!(id ><f)>l<,lnd(2oh GraphlndCOh (WZ)~

Pz %k Pz,
Here we use Graphg to denote (g x id) o A, i.e., the graph map following by swapping the two Cartesian
factors.
Now base-change for the Cartesian diagrams:

Graph? w
Y Y 2 x Y 26 — 22 42
lf lid xf lwz \LGraph¢Z
2 —2% L2x2 2 —2% L ax%

yields identifications:

Graph;’!(id ><f)=x<,lndCoh Graphwg?:h (WZ,) ~ f*,lndCohA!Z Graphlg;if::h (UJ,‘Z,) ~

f*,lndCoh,wIZr’mfi*Coh (UJZ¢)
as desired.
REMARK 3.2.4.1. The map (3.4) is ['(2?, O )-linear.

3.2.5. Categorical setting. We now present a more conceptual approach to constructions such as the
above.
Suppose F : € — D € DGCatcopt is a map between dualizable DG categories. Suppose that € (resp. D)
is equipped with an endofunctor ¢e (resp. ¢p) and that:
e [ admits a continuous right adjoint F.
e F' lax intertwines ¢, i.e., we are given a map (often an isomorphism) F o ¢pe — ¢p o F.

Then standard functoriality of traces yields a canonical map:
tre(pe) — tro(¢pn) € Vect

associated with this data. Namely, we have:
tre(¢e) — tre(pe F'F) ~ trp(Foe F) — tro(¢p FF™) — trp (¢p).

Here we used the cyclicity of traces and standard adjunction maps.

3.2.6. Pushforward/pullback revisted. Suppose first that we are given f : Y — Z as before representable
and proper. We also suppose Y and Z are ind-QCA (to ensure IndCoh is dualizable).

In the setting of §3.2.5, take € = IndCoh(Y), D = IndCoh(2), F = flrdCeh 4 = ¢'9"f’*c°h and ¢p = ¢'Z"f’f°h.

Then the categorical formalism yields a canonical map:2®
FlndCOh (9¢,Wy¢> = tI‘deoh(y)(Qs;"d,EOh) - trlndCoh(Z)(Q{)IZr.]:{EOh) = FlndCOh(Z’¢7wZ¢)‘

A straightforward diagram chase shows that this map recovers (3.3). We remark that properness is needed
for findCoh to admit a continuous right adjoint.

Next, take f : Y — Z l-representable and eventually coconnective. Now take C = IndCoh(Z), D =
IndCoh(Y), F = fndCohs "o = (b!Z, op = qb!\d. Then the categorical formalism yields a canonical map:2°

[IndCon (29 wys) = trlndCoh(Z)((z)!Z,) - trlndcoh(y)(¢!y) = FlndCOh(3¢awy¢)~
A diagram chase shows that this map coincides with (3.4).

REMARK 3.2.6.1. The second diagram chase is routine, but unsurprisingly, somewhat more involved
than the first. We omit the verification here. Actually, for our purposes, the reader may take the categorical
constructions as definitions of (3.3) and (3.4), completely ignoring the material of §3.2.3-3.2.4. We only
included the explicit constructions to make the construction appear more concrete.

27This kind of commutation is a general fact: see [12] Proposition 7.1.6. However, it is particularly easy in the present
setting: by the Kiinneth formula, we can write (f x id)' = f' ®id and (id x f)*:IndCoh a5 jd @ f#-IndCoh,

28Here the equalities are standard isomorphisms; see e.g. [15] §3.5.3.

29Note that tre(F) = trev (FY), so tr(¢!) = tr(gndceh).
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3.3. Spectral Eisenstein series.
3.3.1. Setup. We have the standard correspondence:

restr
LS’

/ X
LS;fstr LSrcgstr .

The map p is representable and proper, while the map q is quasi-smooth and 1-representable. Also, each
of these spaces carries a Frobenius self-map, and the maps p and q intertwine these Frobenii. Therefore, by
(3.3) and (3.4), we obtain canonical maps:

I‘(Ls%rthm, wLSi}‘rthm) — F(Lsgthm7 (ULsaBrthm) - F(LSaG‘rthm, (A)Lsac}~tl1n1).

DEFINITION 3.3.1.1. The composition of the above maps is the spectral Eisenstein series Eis®P® :
I(Lsathm, Wi garthm ) = r(LSg™™, W garthm)-

3.4. Spectral vs. function theoretic Eisenstein series.
3.4.1. Recall that restricted geometric Langlands (see Conjecture 2.3.1) predicts an equivalence of cat-
egories:

(3.7) Shvaip (Bung) ~ IndCohaijpspec (LSYG?S“),

The equivalence should be subject to various compatibilities. We highlight two of salient interest here:

o (Hecke compatibility): The equivalence (3.7) is of QCoh(LS™")-module categories; here the right
hand side has the evident action and the left hand side carries the action of [2] Theorem 14.3.2.
e (Eisenstein compatibility, P = B case): The diagram:

gLisse(Bunr) B Shvaiip (Bung)

| I

QCoh(LSi*) — B IndCohaigpepes (LSEE')

commutes; here the left arrow is the equivalence unconditionally constructed in [2] Example 21.2.9.
3.4.2.  We now recall the following result:
PROPOSITION 3.4.2.1. Suppose Y is a quasi-smooth ind-algebraic stack equipped with a self-map ¢y. Let

N < T*[—1]Y be a closed conical substack (of the -1-shifted cotangent bundle of Y) such that for every point
y€Y?, the map d¢[—1] : N, — N, is contracting onto 0 € T;*[~1]Y. Then the map:

!

tT1ndCohn (¥) (@) = tTindcon(y) (¢') = T'(Y?, wys)

is an isomorphism.

See [2] §24.6.8.3°
In particular, we find that restricted geometric Langlands produces an isomorphism:

(3.8) Aut@t ~ D(LSE™™, Wy garinm ).
Assuming the Hecke compatibility for restricted geometric Langlands, this is an equivalence of Excs =

F(Lsgthm,OLSaG}-mm)-modules, where the left hand side inherits its Excs-module structure from [4]. We

remind (see [2] §24.2) that the Exci-module structure on Auti™ refines the Lafforgue-Xue action of excursion
operators on this space (see §1.2.3).

30Tn Joc. cit., this is formulated as a conjecture. But it is actually straightforward to prove from the formalism of [1].
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3.4.3. We now obtain:

PROPOSITION 3.4.3.1. Assume restricted geometric Langlands holds for G with its Eisenstein compati-
bility. Then the following diagram commutes:

ps-Eis

unr unr
Autrp’: Aut g’y

! )

arthm Eis®Pe¢ arthm
F(LST 5 (J.)Ls%rthm) _— F(LSG 3 stzrthm)

where the vertical isomorphisms come from (3.8).
Indeed, this follows from the realizations of ps-Eis and Eis*?®® via traces, see (3.2) and §3.2.6.

3.5. Formulation of the main result.

3.5.1.  We will be concerned with localized versions of the map Eis
formalism.

Suppose we are given a commutative diagram:

SPe¢ We briefly discuss the relevant

arthm
LS%

arthm arthm
LSY LSy

Al
Let A!:= A1\0. Note that:

L(LSE™ w)[f 1] = c?y_mr(Lsgthm, Wrgarinm) = r(Lsy™ AxlAl, w)

and similarly for (T, g) or (B, fILS g = 9ILS gurnm ) i Place of (G, f).
Now observe that we have a correspondence:

LSE™ x Al
Al

(3.9) / \

LSE™™ x Al LSF™™ x Al
Al Al

with left arrow proper and representable and right arrow eventually coconnective and 1-representable. As
in the definition of spectral Eisenstein series, we obtain a canonical map:

(3.10) r(LSathm, wrgarom )97 = r(Lsy™hm, wygaram ) [f 1]
We clearly have:
LEMMA 3.5.1.1. (1) The map Eis®P°° : F(LSaTrthm,wLSaTx«thm) - F(LSgthm,wLSa@nhm) intertwines the

operators of multiplication by f and g, i.e., the map is naturally a morphism of e[t]-modules.
(2) The map (3.10) is obtained by inverting the action of t, i.e., tensoring over e[t] with e[t,t™!].
(3) The diagram:

EisSPec
T(LSF™™, wy g ) —— D(LSE™™, wy gy

| |

renm — (310) renm -
F(LSi}th :WLs;fﬂ'm)[g '] F(LS%““ 7WLS'g“‘m)[f ']
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commutes.

Accordingly, when the meaning is unambiguous, we will abuse notation in also denoting the map (3.10)
by Eis®P¢°.

3.5.2.  We are now in a position to state our main result about Eis

THEOREM 3.5.2.1. There exist functions dx € QOOF(LSgthm, 0) and 6f € QOOF(LS;vfthm, 0) fitting into a
commutative diagram:

spec

arthm
LS

3.11 h h
(3.11) Lt Lyt

Al
such that:

(1) The map 6 takes a non-zero value at the trivial Weil local system.
(2) The object:
I‘(LSgthm, wLSaémm.)[(STl] € Vect

G
lies in cohomological degree 0,°' and similarly with T replacing G.
(3) The map:
(3.12) Eis®Pe¢ . F(LS‘}“hm,wLS?m.m)[d%l] — F(Lsgthm,stacftlnn)[(sgl] € Vect”

18 surjective.
This result will be proved in §4.

3.6. Proof of Theorem A. We now deduce the main theorem of this paper from Theorem 3.5.2.1 and
our earlier observations. We remind that we have assumed G is semi-simple®? here.

3.6.1. First, let us recall the explicit meaning of Langlands parameters, following [22] and [30].

Let o be an e-point of LSaGfthm, i.e., a Weil G-local system on X. We obtain a map:

evy : Excn — €

sending a function f € Exc = F(LS"gthm, 0) to its value at 0. We abuse notation in also letting ev, denote
the induced map (obtained by passing to H®) H°(Exc) — e of classical commutative algebras. We let
m, € H°(Exc) denote the corresponding maximal ideal.
Now recall (from [4], building on [22] and [30]) that Exc — hence HY(Exc) — acts on Aut'.
We then define:
Autg's (o) € Autg'e
to be the m,-torsion in the right hand side, i.e., ¥ € Autgf;[ ] ifm? -1 =0 for n>» 0.

We let ‘AUtgiusR[O‘] = ‘AUtgjz,[a] N ‘AutuGIjéusp'

o

WARNING 3.6.1.1. Because Aut@’s, . is* finite-dimensional, Aut@™, . decomposes as a direct sum:

(3.13) Auti™ o~ @ Autir
o/~

G,cusp G,cusp,[o]”

31Note that (3.8) predicts that F(LS‘gthm, sta}'thm) lies in cohomological degree 0. Although we ultimately will be assuming
G

restricted geometric Langlands, we are striving here to formulate a theorem independent of it, so we have included this statement.
32This assumption somewhat simplifies the discussion. Suitably formulated, the results here apply as well for general reductive
groups.
33We remind that (using that G is semi-simple) there is a quasi-compact open U € Bung defined over Fy; such that any
Y € Autgly,, vanishes outside U(Fq) (see [9] Proposition 1.4.6 in the sheaf-theoretic setting); as U(Fy) is finite, we clearly
obtain the assertion.
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(Here the implied equivalence relation ~ relates o1 and oo when m,, = m,,; according to [22] Proposition
0.38, this occurs exactly when o and oy have equivalent semi-simplifications.)
However, we do not have a similar decomposition (3.13) for compactly supported automorphic functions;

there are such functions that do not lie in any Autg’; To]"

3.6.2. Recall® that ps-Eis(Aut}y) n Autdtysp = 0.

Therefore, it suffices to show that any ¥ € Au uc‘f;[triv] < Aut’, lies in the image of the map ps-Eis :
Autp’y — Autgl. This will be our objective.

3.6.3. Recall that we have 0x € Excpy := F(LSaérthm, 0). As Auty" is acted on by Exce, we may invert
the action of d:

.Aut“éji[éél] = c%.iznﬂutuéfz.

We now translate from spectral Eisenstein series using restricted geometric Langlands (and Proposition
3.4.3.1). By Lemma 3.5.1.1 (1), the map ps-Eis intertwines the actions of ;7 and d5 on Auty’. and Autg’,
respectively. Moreover, the induced map:

ps-Eis : Aut 2" [5:;1] — Auty", [(551]

is surjective by Theorem 3.5.2.1.

This means that for our given®® automorphic funciton 1, there is an integer n > 0 so that 0 - =
ps-Eis(¢)g) for some vy € Autif;.

Let A € e be the value of Jx at the trivial local system triv € LS"gthm. Note that (65 — A) € My <
H°(Exc), so for m » 0, we have:

N

(6 = )™ 16 = 0.
By assumption, A # 0. Therefore, we can find a polynomial ¢(¢) € e[t] with:
q(t)-t" =1 mod (t — \)™.
Then we clearly obtain:
ps-Eis(q(67) - o) = a(0¢:) - ps-Eis(o) = a(0g) - 0 - = .

This concludes the argument.

3.7. A toy model for Theorem 3.5.2.1. We now give a simpler setting in which a form of Theorem
3.5.2.1 holds. We will ultimately reduce the proof of Theorem 3.5.2.1 to this special case. The special case
we consider is a standard result about the Grothendieck-Springer resolution.

3.7.1. Analogies. By way of analogy, we replace the diagram:

legstr
/ X
LS;SS“ LSrG?str

with the diagram:

(3.14) / \

34Gee [26] 11.2.4 for a much stronger assertion.
35To be clear: this is true for any compactly supported automorphic function, but may be essentially vacuous if the form
has another Langlands parameter.
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In place of Frobenius, we consider each term in (3.14) with its identity endomorphism. Passing to fixed
points under this map, we obtain the diagram:

ad
Here for an algebraic group H, H / H denotes the (stack) quotient of H acting on itself by conjugation;
d S
we remind3® that H | H ~ (BH)S' = (BH)=19, We remark that the natural map O ., — w .. isan
H/H H/H
isomorphism.
Therefore, the formalism of §3.2 yields a canonical map:

(3.15) Eis™' : D(T 7,0 .0 ) > T(G7G0 ).

LEMMA 3.7.1.1. The left and right hand sides of (3.15) are concentrated in cohomological degree 0 and
the map Eis*P°“' is surjective.

PROOF. The most straightforward proof is as follows. We identify Rep(7') with @;.;Vect and Rep(G)
with @5c4+ Vect; here @ denotes the coproduct on DGCatcony and we have implicitly chosen representa-
tives of isomorphism classes of irreducible representations. Under this identification, we obtain canonical
isomorphisms:

. vad .
@S\EAk = trRep(’j’) (ld)(2 F(T / T, OTﬂdT))
(3.16) N /
C—DS\EA+]€ = trRep(G) (1(:1)(2 F(G / Ga Oéa/dé))

These identities clearly imply that both sides of (3.15) are concentrated in degree 0. We let e 5 (AeA)
and eg 5 (5\ e A*) denote the basis vectors for these vector spaces coming from the displayed isomorphism.
By Borel-Weil-Bott, for A dominant, the map Rep(T) — Rep(@) sends £*0()) € Rep(T)¥ (the 1-dimensional
representation corresponding to wo(A) to V*) € Rep(G) (the representation with highest weight \), so sends
€0 (%) 1O € i this yields the surjectivity.

(]

REMARK 3.7.1.2. We remark (although we do not need it) that in (3.16), the isomorphism @5 5+k ~

L ad -
I‘(Ga/ G,0 .4 _) sends ex 5 (notation as before) to the trace function corresponding to the representation
G/G ’

VA of G, and similarly for 7. Therefore, the composition:

@ k~T(TIT,0 ) D(GFG,0 W ) ~Fun(@W = (@ k
XeA T/T G/G XeA

EisPec:toy ) w

is explicitly calculated using the Weyl character formula (and Borel-Weil-Bott).

36There is some sign ambiguity in the isomorphism here. Usually this does not matter, as for the present discussion. But it
will matter later in the paper. We clarify the implied sign conventions in §4.4.2.
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3.7.2.  We conclude by recording a variant.
Note that we have a commutative diagram:

where T//W = Spec(e[A]") is the GIT quotient, the lower left map is tautological and the lower right map
is the standard characteristic polynomial map (uniquely characterized by this diagram).

Therefore, Eis®*“* is a map of Fun(7//W)-modules. Lemma 3.7.1.1 then says that Eis®**“' is an
epimorphism of Fun(7//W)-modules, so we obtain:

COROLLARY 3.7.2.1. For any g e T(T//W, Oz w), the map:

Eig®Pec: ,toy . F(Ta/dT o) Cad )[g_l] — F(é /dé, O _ad v)[g_l]'
T G/a

is a surjection.

4. Grothendieck-Springer theory for LS ™

The goal of this section is to prove Theorem 3.5.2.1. As this theorem occurs purely on the spectral side,
throughout this section, we work by default over the field e.

4.1. Base-points and Weil group notation. Below, we take xo € X (k) a marked geometric point,
which will serve as the base-point of our fundamental group; here we remind that k = Fq.

We encourage the reader to be kind to themselves and assume that x is defined over F; in this case
essentially all of the remaining material of §4.1 can be ignored.

With that said, we include some technical material here to allow for the case where Xy has no rational
points.

4.1.1. Let X denote the universal cover of X based at x0; by definition, X is connected, pro-finite étale
over X, equipped with a lift Zy of xg, and initial among all such data. Note that X is also the universal cover
of Xy, so there is a tautological action of 7¢(Xo) ( = 7¢(Xo, z¢)) on X (realizing it as a w¢*(X)-torsor over
X and a 7¢*(X)-torsor over X, each torsor being understood as locally trivial for the pro-étale topology).

Let Froby : X — X be the geometric Frobenius map. Choose once and for all a lift of the point
Frobx (z) to X. It is easy to see that there is a unique map Frob x fitting into the commutative diagram

X by ¥
X Frobx/ X

and sending Ty to our chosen lift of Frobx (zg) (which will now be denoted Frob x(Zo))-

This choice also (relatedly) defines an action of Z on X in Sch /x,; the inverse®” to generator —1 € zZ
acts by a map v : X — X characterized by being Frobenius semi-linear over k£ and so that ~ o Frob x is the
absolute Frobenius of X.

This data defines a splitting of the map Wx — Z. We let F € Wx denote the image of 1 € Z under the
splitting. By definition, F~1 € Wx < 7§*(X,) acts on X by the map denoted 7 above.

3TWe note that per our conventions, the inverse to the generator —1 € Z corresponds to the arithmetic Frobenius when we
identify Z ~ Gal(Fy).
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For g € 7$4(X), we let g := Adp(g). Note that the choice of point Frob x (Zo) gives an isomorphism
78 (X, Frobx (z0)) ~ 7*(X, 2¢), and the composition:

7t (Frobx)
_

ﬂft(X, xo) Wft(X, Frobx (z)) ~ Wft(X, xo)

is the map g — ¥¢,3% i.e., we have:
(4.1) mi* (Frobx)(g) = “g-
4.1.2. The choice of point Frob x (To) also defines an isomorphism:
x} ~ Froby (zo)* : Lisse(X)¥ — Vect”

of e-linear symmetric monoidal functors. In fact, we claim that this comes from an isomorphism of symmetric
monoidal DG functors:

(4.2) x§ ~ Frobx (z0)* : qLisse(X) — Vect.

Indeed, this follows formally whenever qlLisse(X) is the derived category of its heart. This is the case for
X # P! by [2] Theorem E.2.8. Slightly more elementarily (and allowing genus 0), we choose U < X
affine open and containing xy and Frobx (x¢), and then qlLisse(U) is the derived category of its heart by the
(simpler) Theorem E.2.8 (a).

REMARK 4.1.2.1. The following remark will not be used. For the present moment, let k be any alge-
braically closed field (not just F,). Let Y /k be a connected scheme of finite type. Let y1,y2 € Y (k) be two
points. Then at this moment, it is natural to ask if there exists an isomorphism of symmetric monoidal DG
functors:

yf ~ ys : qlisse(Y) — Vect.

We claim this is so. Indeed, we have effectively treated above the case of a smooth connected curve. The case
of any connected curve follows in an evident way by considering normalizations (using intersection points
between irreducible components of the singular curve as signposts leading the way). Finally, the general case
follows by noting that there exists a connected curve C' and a map C — Y with y; and y» in its image by
an elementary argument. (One wonders if there is a purely Tannakian argument that would apply in this
derived setup.)

4.2. The adjoint quotient. Let H be an affine algebraic group in what follows.

4.2.1. Let LS} ° denote the neutral connected component of LS}™, i.e., the connected component
containing the trivial H-local system on X. We remind from [2] Proposition 3.7.2 that LS)s®"" parametrizes
(in a precise sense) H-local systems on X with trivial semi-simplification; in what follows, we refer to these
as unipotent H-local systems.

We then set:

arthm,o | __ arthm restr,o
Lgathme  _ pgarthm [ grestro
Lsrcstr
H

In other words, LS;";thm’O is the fixed points of Frobenius acting on LS);™"°; it may be thought of as
parametrizing Weil H-local systems that are geometrically unipotent.

38Indeed, we have Frobx (g%0) = 7§t (Frobx )(g) - Frobx (Zo) by definition of 7§t (Frobx )(g).

Now by definition of F = v~!, we have F~1 -Frob (9%0) = ®5(g%) for 5 the absolute Frobenius. By functoriality, absolute
Frobenius is a map of spaces with 7$*(X)-actions, so @3 (9%0) = g+ @3 (Z0)-

Comparing to our earlier equation, we see this expression equals F~!7¢*(Frobx)(g) - Frob x (F0) = F~17¢t(Frobx)(g)F -
F~1Froby (o) = F=1r$t(Frobx)(g)F - ®%(%0). Therefore, g = 7' (Frobx)(g)F, yielding the assertion.
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4.2.2. There is a canonical map BH — LS}™" corresponding to the trivial H-local system. This map
is Frobenius equivariant, where Frobenius acts trivially on BH.
Passing to Frobenius fixed points, we obtain a map:

d
(4.3) Tyt H) H — LSuthme

ad
REMARK 4.2.2.1. Informally, the composition H — H / H — LS?thhm’o sends h € H to the Weil repre-

sentation Wx — H defined by Wx — Wx /75t (X) Rz 2N H.As we only consider the groupoid of Weil

representations, this map factors through the adjoint quotient as desired.

REMARK 4.2.2.2. One main idea below is that 7z is not too far from being an isomorphism. To
motivate what follows, we observe the following obstruction to 7y being an isomorphism. Coarsely (e.g., at
the level of field-valued points), the enemy is clearly Weil representations that are geometrically unipotent
and geometrically non-trivial.

Suppose H = GLy. Let A\ € € and let o) denote the 1-dimensional Weil group representation where
Frobenius acts as multiplication by A (and 7¢*(X) acts trivially). Extensions 0 — oy — 0 — o7 — 0 are
classified by suitable group cohomology for Z, i.e., by H' of the complex:

I_Io—me[Z]—mod (Cétﬂ (X)7 U)\)'

Here Ceto(X) is the complex of étale homology for X, and the Z-action has generator acting by geometric
Frobenius on étale homology. If \ # 1, it is easy to see that we have an exact sequence:

% —id
0 — H' (Home(z) moa(Cet,e (X), 01)) = Hey (X, 00) ——— Hg (X, 01)

where ¢x is the geometric Frobenius acting on HZ.?* Here we have H} (X,0,) = H}(X,e), but with
Frobenius action given as A times the standard one. Therefore, if A is a Frobenius eigenvalue appearing in
H} (X, e), we find geometrically non-trivial extensions of the desired type.

4.2.3. Splitting. We obtain a map LS}*"" — BH by restriction to z. This map intertwines Frobenius
with the identity by*° §4.1.2, so on fixed points we obtain a map:

d
LSyt — H'/ H.
We denote this map by X = Xz, and similarly its restriction to LS4,
By construction, the composition:

d__ d
HY) H T pgarthm Xi, iy
is the identity map.

4.3. Non-resonance.
4.3.1. Define the set Rx < e* as the set of of eigenvalues of the (geometric) Frobenius acting on
H} (X,e) x H(X,e).

REMARK 4.3.1.1. By the Weil conjectures for curves, 1 ¢ Rx. Also, ¢ always lies in Rx (but this is less
relevant to us at the present moment).

39Note that geometric Frobenius for homology and cohomology are transpose (i.e., dual) morphisms. However, if we consider,
say, homology He,1(X) = (7§*(X)?P); ® e with its geometric Frobenius (which corresponds to Adp : m*(X) — 7$*(X) by
(4.1)) as a Z-representation, the dual Z-action on cohomology has the generator acting by arithmetic Frobenius. This accounts
for the inverse sign in the above formula.

4075 be clear, when xg was not F,-rational, this equivariance depended on auxiliary choices.
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4.3.2. Let H be an affine algebraic group.
Let V be a finite-dimensional representation of H. Let py : H — GL(V) be the corresponding homo-

d
morphism. Let chy : Ha/ H x A' — A! be the map fitting into a commutative diagram:
Hx A 225 Grv) < Al

l J(QJ\)Hdet(g—)vidv)

C

d
HYH x Al — ™ Al
Explicitly, for h € H and XA € A!, chy([h], ) is the characteristic polynomial of py (h) evaluated at \.
d d
We then let (H a/ H)vonres < H a/H denote the open consisting of conjugacy classes [h] such that

d
[ ey chp([R];A) # 0, where b is the adjoint representation of H. Explicitly, (Ha/ H)rorres ig the set of
conjugacy classes [h] such that the matrix py(h) € GL(h) does not have any eigenvalues in Rx. We remark

d d
that the open embedding (H a/ H)rovres —y | TH is clearly affine.
d
REMARK 4.3.2.1. Note that [1] € (H} H)""™ by Remark 4.3.1.1.

d
NOTATION 4.3.2.2. For any stack Y equipped with a structure map to (Ha/ H)rorres e let Yronres =
d
Yx . (H TH ynon-res  We use this notation particularly in the case Y = LSZ(m“n’O equipped with the
H/H
structural map xpg.

4.3.3. Main geometric result. The following result compares arithmetic local systems with the adjoint
quotient:

THEOREM 4.3.3.1. The map:

_ (Ha/dH)non—res _ Lsaﬁthm,o,non—res
from (4.3) is an isomorphism.
The proof of this result is the subject of §4.4.

4.4. Proof of Theorem 4.3.3.1.
4.4.1. A criterion for a map to be an isomorphism. We begin by observing:

LEMMA 4.4.1.1. Let f: Y1 — Yo be a morphism of algebraic stacks that are locally almost of finite type
(over the algebraically closed field e).
Then f is an isomorphism if and only if:
(i) f is formally étale, i.e., its cotangent complex Q‘lél/‘dz € QCoh(Yy) vanishes.
(i) The map Y1(e) — Ya(e) is an isomorphism of (1-)groupoids.
Here we explicitly remark that condition (ii) can be separated into the two separate conditions:
(7i1) For every y1 € Yi(e), the map Auty, (e)(y1) — Auty,e)(f(y1)) of automorphism groups is an
isomorphism.*!
(iio) For every ys € Ya(e), there exists y1 € Y1(e) and an isomorphism f(y1) ~ y2 € Ya(e).

ProoOF. It suffices to show that for every affine S locally almost of finite type and equipped with a map
S — Y, the map S xy, Yy — S is an isomorphism. The properties (i) and (ii) are obviously preserved under
such base-change, so we may assume Y5 is an affine scheme. Moreover, it is standard that Y; — Y is an
isomorphism if and only if Y; xy, yg‘ — ygl is so; therefore, we may assume Y, is moreover classical.

Now Y; is an algebraic stack with trivial automorphism groups at e-points, and therefore an algebraic
space. Moreover, Y1 — Yo is étale, so Y; is also classical. Now f is a radicial map (because it is locally of

4lye emphasize that there is no room for anything derived here; this is a map between two sets.
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finite type and injective on e-points) and étale, so an open embedding. Finally, because f is surjective on
e-points, it must be an isomorphism.
O

Below, we will verify the above hypotheses for the map 75 considered in Theorem 4.3.3.1.

4.4.2. Conventions, formulae, and signs. Before proceeding, we establish certain signs that will be im-
portant. Roughly speaking, it is conceptually difficult to distinguish 7z ([h]) from 74 ([h~']), but Theorem
4.3.3.1 does distinguish them, so we must explain exactly how to understand the map 75 a bit more explicitly.
(The reader is invited to skip this digression and return to it as needed.)

Below, we let Froby : X — X denote the geometric Frobenius map.

We normalize lisse Weil sheaves on X to be a pair (o, a) where o € Lisse(X)Y = qLisse(X)? is equipped
with an isomorphism « : ¢ = Frob%(c). The direction of the map « is the “sign” in question. Let us
explain first why (and in what sense) this sign is the right one for our existing conventions.

Note that V := x¥(0) is a representation p&°™ of 7{*(X). We also obtain an isomorphism:

(4.4) V = 25(0) 2% Froby (z0)* (o) ‘= 2 (0) = V
that we denote by p(F). In the notation of §4.1.1, one finds tautologically that p(F)op8°™(g) = p&<°™(7¢t(Frobx )(g))o
p(F). By (4.1), we can rewrite this equation as:

p(F)pE™ (g)p(F) ™" = pEeo(FgF 1)

=p
so we obtain representation of Wx on V with F acting by (4.4) — had « gone the other way, we would need
to invert (4.4).

Similarly, for H an affine algebraic group, a Weil H-local system is an H-local system oy on X with
an isomorphism « : o —> Frob% (o) (of H-local systems). As a consequence, for h € H, 74 ([h]) has op
trivial and « is given as multiplication by h. This ensures that the corresponding Weil group representation
Wx — H(e) factors through Z = Wx /7*(X) and sends the generator to h (as it was supposed to).

Finally, for a lisse Weil sheaf (o, «r), the natural “geometric” Frobenius action ¢, on its cohomology is
given by the operator:

(4.5) Cer(X,7) = Ca(X, Frob (9)) 2= Car(X, )
where the first map is the tautological one.

REMARK 4.4.2.1. We wish to be clear about the logical status of the above material. First, we have
argued that the map « should be considered as going in a certain direction. But at some level, this is a
moral argument, not a mathematical one. Rather, we have made explicit a certain*? convention that was
implicit before (and shown how it leads to the orientation informally suggested in Remark 4.2.2.1). Logically
speaking, establishing this convention was strictly necessary for the statement of Theorem 4.3.3.1.

4.4.3. Ty is formally étale. We will show that TH|(H,71H) is formally étale.

First, note that we are reduced to checking that the tangent complex vanishes (e.g., both sides have
perfect cotangent complexes). Moreover, we can check this on fibers at all e-points as both sides are locally
almost of finite type.

In general, for o € LS%™™ (e), we can compute the tangent complex as:

Tygarm o = Cet (X, ho[1])? = Ker (id ¢, : Cer(X, ho[1]) = Cer(X, ho[1])).

Here b, is the adjoint Weil local system on X induced by o, Ce¢t (X, ho[1]) is its étale cohomology complex
(up to shift), and we are taking Z-invariants with respect to the action of the Frobenius ¢, (coming from
the Weil structure on o).

43

d
42For even more clarity: H a/ H = (BH)S ' has an automorphism of “loop reversal,” and we need to remove the ambiguity
this automorphism provides.
43See [2] Proposition 2.2.2, §24.5.1.
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For h € H(e), the tangent complex T' e € Vect is the homotopy kernel (i.e., shifted cone):
H/H,[h

T ..  =Ker(id—Ady,:b[1] — b[1])
H'J H [h]

d
where Ady, is the adjoint action of A on h; more naturally, writing H aL/ H = Maps(BZ,BH) and this formula
yields Z-invariants for the Z-action on h[1] = T spec(r) With generator acting by Ady. (One consequence:

we see that in the above description of T' .4 could have used Adj,-1 in place of Ady.)
H [ H,[h]
On the other hand, we have:

Cet (X, by (qnp [1]) = Cer (X, €) @ b[1]
with Frobenius:
Pra((h)) = Ox ® Adp-
where the inverse occurs because of the appearance of a1 in (4.5).
The Frobenius equivariant map e = H°(X, e) — Cg (X, e) (with Frobenius acting trivially on the source)
induces a commutative diagram:

h[1] = e®b[1] b[1] = e®b[1]

l l

Car(X, @) @ b[1] 222050 0, (X e) @ b1,
Passing to (homotopy) kernels along the rows yields the differential for 75 at [h].**
Therefore, we see that 7 is formally étale at [h] if and only if:
id—¢x ®Ady-1 : 771 Cee (X, e) @b — 771 Cei (X, e) ® b
is an isomorphism, or equivalently, the induced maps on cohomology:
id—¢x ®Ady,—1 : Hi (X, e)®bh — H} (X, e)®b
id—¢x @ Ady-1 : Hi (X, e) ®h — Hg (X, e)®b

are isomorphisms. Clearly this happens exactly when 1 is not an eigenvalue of ¢x ® Ad;-1, which occurs
exactly when 1 cannot be written as A - u for A an eigenvalue of ¢x and p an eigenvalue of Ad;-1 = Ad;l,

id—Ad, 1

i.e., when no eigenvalues of Ady, lie in Rx. This is the defining condition for [h] to lie in (H a/dH yron-res - go
we obtain the claim.
4.4.4. Stabilizers. Next, we verify condition (7i1) from Lemma 4.4.1.1. In fact, this is obvious, and we
will never use the subtleties of non-resonance in this step. We explicitly spell out the argument here:
Suppose o € LS"}}thm(e). By definition, o lifts to a continuous Weil group representation p : Wx — H(e)
that is well-defined up to conjugacy. In this case, Autygarinm ) (o) is the stabilizer of the image of p in H(e).

ad
Similarly, an e-point in H / H lifts to some h € H(e), and Aut ..  ([h]) is the stabilizer of h.
H [/ H(e)

Now for h € H, g ([h]) is the Weil group representation Wx — Z Rl 5| (e), whose stabilizer obviously
coincides with that of h.

4.4.5. Lifting isomorphism classes: setup. Finally, we verify (ii2). Suppose o € LSgthm’o’non'reS(e). We
lift o to a continuous representation p: Wx — H(e). Let po : 75¢(X) — H(e) denote the restriction of p to
the geometric fundamental group; our task is to show that pg is trivial.

This is a concrete linear algebra problem; we spell out the details below. We use the notation of §4.1.1
(in particular, F '€ Wx and g+ fg). In addition, we introduce more notation:

e Let H, € H denote the Zariski closure of Image(po).
e Let 0 : H, = H, denote the adjoint action of p(F), i.e., 8(h) = Ad,p)(h).

d
4475 see this, consider H a/ H as the moduli of arithmetic local systems on Spec(k), then apply the above discussion about
LSS;;thm accordingly.
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In these terms, note that we have:

(4.6) po("g) = B(po(g)) for all g € 78(X).

We now make the following additional observations about our hypotheses.

First, that py defines a point in LS?}S“’O C LS%*™ means that py factors through a unipotent subgroup
of H by [2] Proposition 3.7.2. Equivalently, H, is unipotent.

Second, note that the non-resonance condition means that Ad,r) = Lie(f) : h — b has no eigenvalues
in Rx.

4.4.6. Lifting isomorphism classes: proof. In the above notation, our task is to show that H, is trivial.
By unipotence, it suffices to show that its abelianization H2 is trivial. Let V := Lie(H2P); as H2P is an
abelian unipotent group, we abuse notation in identifying it with (the e-scheme associated with) its Lie
algebra.

By functoriality, 6 induces an automorphism of V', which we also denote by 6. Suppose V' # 0; then
there exists an eigenvector p € V'V for the transpose 0¥ : V¥V — VV; we let X\ € e* denote its eigenvalue.
Note that by the non-resonance assumption, A ¢ Rx.

We now obtain a continuous homomorphism:

(X)) 2 Ho(e) — V —E s e

PO

that by (4.6) satisfies:

(4.7) po("g) = X po(g).

We also remark that Ker(H,(e) — V — e) is the set of e-points of an algebraic subgroup of H,, so by
definition of the latter, the homomorphism py must be non-trivial.

Now 7y extends to a non-zero e-linear map H{'(X,e) — e, i.e., it comes from a non-zero cohomology
class n € H (X, e). As g — Fg induces the (geometric) Frobenius on H¢'(X, e) (see (4.1)), (4.7) means:

dx(n) =A-n.

This contradicts the non-resonance assumption, so we conclude that V = 0, as was desired.

4.5. Setup for the proof of Theorem 3.5.2.1. We now begin the proof of Theorem 3.5.2.1.

4.5.1. Recall that our objective is to define the commutative diagram (3.11) and verify certain properties
of it.

We begin by defining a certain function § : 7 — A! as:

5(t):= [ cha(t, ), teT
AeR x

where we use notation as in §4.3.2, and are considering § as a representation of 7' via the adjoint action.
More explicitly, we have:

)= [] (=N TT(a) - )

AeR x aeA

where we consider & as a map T — G,,, = Al
Clearly § is a W-invariant morphism, so induces a map 7///W — Al; we also denote this function by .
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4.5.2. We now form a commutative diagram:

arthm,o
LS
e
arthm,o sad ~ arthm,o
LSY BB LS
le / \ lXc
(4.8)
~ad - ~ad »
T,T GG
T//W
Is
Al
We now define 0z so that its restriction to LSgthm’O is given by the unique map LSgthm’o — Al

appearing in the diagram (4.8), and so its restriction®® to LSZ‘—Y,rthm \Lsgthm’o is identically 0. We define d;

in exactly the same way, replacing G by T' everywhere in the previous sentence.

Below, we check that the pair of maps (d,d4) satisfy the conclusions of Theorem 3.5.2.1.

4.5.3. First, the commutative diagram (3. 11) clearly exists by (4.8).

4.5.4. Second, we need to check (1) from Theorem 3.5.2.1, i.e., that d takes a non-zero value at the
trivial Weil local system. By construction, it is enough to show §(1) # 0. Clearly 6(1) = [ [y, (1 —\)dim(&)
and we recall that 1 ¢ Rx (see Remark 4.3.1.1).

4.5.5. Next, we observe that the locus where § is non-zero is exactly Lsgthm’O’non‘]res (by definition).

Therefore, by Theorem 4.3.3.1, we have:

(49) F(Lsgthm’ w)[dél] — F(I‘,Segthm,o,non—res7 w) ~ F((éa/dé)non-res’ w)

v cad «

which is concentrated in degree zero because it is a localization of F(G' G w) ~T(G/G,0) at a function

Ga/(jé — A, verifying hypothesis (2) from Theorem 3.5.2.1.

4.5.6. It remains to verify the surjectivity (i.e., Theorem 3.5.2.1 (3)). We will do this in the remainder
of the section; here we make some preliminary, orienting remarks.

Recall the setting of Lemma 3.7.1.1. We observe that we have two maps:

(4.9)

arthm —17 Eis®P°¢ arthm — arthm,o,non-res
D(LSF™™, w)[67] —— T(LSE™, w)[d;'] = T(LSE™ ,w)
I(

F(G / é,w)[(éé o Té) ] (G‘ Gv)non—res7w).
and:
EiSSpcc,toy

DS, @)l 2 (T T w) (0 0 7r) ]

T
ad

. ~ad «
D(G/Gw)(bg07e) '] =T((G/ G w).
By Corollary 3.7.2.1, we would be done if these two maps coincided.
This expectation is somewhat too naive: we instead show that they coincide up to invertible L-values,
which will suffice for our purposes.

45We remind that LSZV*'tr ° c LSreStr is a connected component, so this process of defining the function on LSarthm ° =

LS‘erthm X [ grestr LSreStr ° and settmg it to be zero elsewhere is legitimate.
G
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4.6. L-values and traces. In §4.5.6, we made an opaque remark about L-values. In this subsection,
we will make a precise connection between categorical traces and L-values; this is the main computational
input we will need.

In what follows, we let H denote a unipotent algebraic group over e. (In practice, H = N 2

4.6.1. Classes and traces. Suppose € € DGCatcoyt is a dualizable DG category and T : € — C is an
endofunctor.

Let C° < € denote the subcategory of compact objects and let 718X denote the category of pairs (F, a)
where F € C¢ and o : F — T'(F) is a morphism in C.

Given some (F,«) as above, there is a canonical point cl(F, ) € QF tre(T). Indeed, this follows from
the functoriality of traces as in §3.2.5; equip Vect with the identity self-map, F as a functor Vect — €, and
« as a lax intertwining map, so functoriality gives a map € = tryect(idvect) — tre(7) € Vect, i.e., a point
cl(F,a) € Q* tre(T).

More generally, we recall that there is a map cl(—) : K(C>T+1X) — tro(T') € Spectra of spectra from the
K-theory spectrum of C&T1%% to the trace of T (with the latter considered as a spectrum via the forgetful
functor Vect — Spectra).

NOTATION 4.6.1.1. Note that Vect™!® — {1/ € Vect®, ¢ : W — W} is a symmetric monoidal category
and as such acts canonically on CT"18% in the above setting. Explicitly, for (W, ¢) € Vect®'!® and (F,a) e
eoTlax W & F is equipped with the endomorphism ¢ ® id + id ®a.

Under the class map, one has:
(4.10) W R®TF, ¢ ®id +id®a) = try (¢) - cl(F, ).

(We do not need this, but this identity can easily be upgraded to a suitable statement at the level of spectra.)

4.6.2. Statement of the problem. Recall that H is unipotent. By [2] Proposition 3.3.2, LS'$*"" is a quasi-
compact algebraic stack; in particular, its structure sheaf Opgrestr € QCoh(LS*%$™) is compact (unlike for
non-unipotent groups). By abuse of notation, we will let Opgrestx denote the “same” object of IndCoh(LS%™™)
under the fully faithful embedding QCoh(LS*") < IndCoh(LS%™") (usually denoted “=” in the literature
on IndCoh).

We have a map 79 : BH — LS%* corresponding to the trivial local system. We can then form
704" (OB 1) € IndCoh(LSH™).

Note that both objects OLSrﬁstr, T(')”‘ic°h((9}3 1) are coherent and carry obvious canonical Frobenius equi-

variant structures. Therefore, we may form their classes:*

cl(Opgyeer, ), (104" (OB ), @) € QPT(LSHF™, w).

Our goal is to compare these two classes.
4.6.3. An L-value. Let (x(t) = 3},-o [Xo(Fy)[t" € Q(t) = Q((t)) denote the (-function of the curve X.
We remind that the {-function has the form:

(x(t) = Px ()

AT—t)1—qt) px(t) € Q[t].

Let (% (t) = (1 —t) - {x(¢t). By the Weil conjectures, (% (1) is non-zero and so equals the leading term of the
Taylor expansion®” of (x (t) at t = 1.
4.6.4. Main lemma. We will prove:
LEMMA 4.6.4.1. There exists an equivalence:
CI(T(;?iCOh(oBH)va) = C;((l)dimH 'CI(OLS‘;“UO‘) € QwF(LSgthme

Less homotopically, this result simply means that the images of the two points above in the set o (Q*T(LSH ™, w)) =
HOT(LSH™™ ) are equal.

ad
46By unipotence of H, note that every point of LS‘}‘_}thm is non-resonant, i.e., the map H / H — LSZ}_Irthm is an isomorphism.
4TNote that — unlike in number theory — we are expanding in the variable ¢ = ¢~ rather than in s itself.
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PROOF.

STEP 1. We begin with a toy model.

Let V and W be finite-dimensional vector spaces equipped with endomorphisms ¢y and ¢y .

Let Y denote the stack (over e) V x QoW , which we consider equipped with the self-map ¢ = ¢y x Qoodw;
here QoW is the derived loop space 0 xy 0.

We let e.g. Og € Coh(Y) denote the structure sheaf at the origin, Oy € Coh(Y) denote the structure sheaf
of V.Y, etc.

We use the category Coh(Y)?#:12% of lax ¢4-equivariant coherent sheaves on Y, i.e., Coh(Y)?*!ax = {F e
Coh(Y),a: F — ¢u(F)} (see §4.6.1).

Koszul resolutions provide identities:

DAY @0y = [0y]
DDAV @Ov] = [00].

Here the notation means the following. First, A‘W Y ®Oy € Coh(Y)?*!12% is equipped with the lax equivariant

structure from Notation 4.6.1.1, where A'W" is equipped with the endomorphism A’@yj,; similar notation

holds for A7V¥ ® Oy-. The notation [—] is used for the class in the K-theory spectrum?® K (Coh(Y)®#12x).
By (4.10), we find:

(0o, a) = Y (=1 tr(A¢y) - cl(Ov, @) = Y (=1)7 tr(A py) - cl(Oy, @) =
det(idy —oy) - cl(Oy, a) € QT (Y%, w)

(4.11)

for Y the derived fixed points.
Similarly, we have:

cl(Oy, a) = det(idw —ow) - cl(Oy, @) € Q°T(Y?, w).
Comparing these two identities, we obtain:
det(idw —dw) - cl(Og, @) = det(idy —¢v ) - cl(Oy, a).
Now assume that det(idy —¢w) is non-zero, so is invertible in the field e. We obtain:

. det(idv —(]ﬁv)
HOo, @) = det(idw —¢w)

Taking V = H},(X) and W = HZ (X) equipped with their Frobenii endomorphisms, we observe that:

det(idy —ov)
det(idw —¢W)

-cl(Oy, @) € Q°T'(Y?, w).

= (x(1)
by Grothendieck’s trace formula.

STEP 2. Next, suppose we are in the following more general setup.
We suppose that Z is a QCA stack equipped with an endomorphism ¢ = ¢z and is equipped with a
quasi-smooth map Z — Y =V x QoW intertwining the maps ¢.
We let Z denote the fiber of Z over 0 € Y. We note that Zy is eventually coconnective, so Oz, is a
coherent sheaf on Z.
The previous analysis then shows:
det(idv —¢v)

(4.12) cl(0g,,a) = P —; -cl(Og,a) € Q*°T(2?,w)

(assuming 1 is not an eigenvalue of ¢y ).

480ne could also simply use Grothendieck groups for our purposes.



AN ARITHMETIC APPLICATION OF GEOMETRIC LANGLANDS 35

STEP 3. We now wish to apply the above formalism to deduce our claim.

Choose a nested sequence {1} = Hy € H; ... S H, = H of subgroups with each H; normal in H and
H;i1/H; ~ G,. We remark that r = dim(H).

Then define algebraic stacks:

2;:=LS"" x B(H/H;)

LSg3E,

where B(H/H;) — LS@?}}I_ is the map 7, i.e., it corresponds to trivial H/H;-local systems on X. Observe
that Z, = L)™', 2o = BH, and we have closed embeddings:

2o > 21— ... > Z,.

We can rewrite the definition of Z; as follows. Note that H/H; acts on the classifying stack BH;;
formally, this is encoded by the fiber sequence BH; — BH — B(H/H;). Unwinding the definitions, this
induces an action of H/H; on LS}*". We then have:

2~ LSS /(H/H,).
Now for each i, we have a diagram:
H/H; —— H/H;11 — BGy,
) ) )
LSE" —— LS| —— LSE”
where the rows are fiber sequences and the top row is a fiber sequence of groups. Here the action of BG, on
LSE™ is induced by the homomorphism of group stacks BG, — LSE?,Ztr corresponding to pullback of local

systems along X — Spec(k) (i.e., the map 7o for G,). Passing to quotients in this diagram and identifying*’
LSS ~ BG, x HY (X) x QoHZ(X), we obtain a fiber square:

2 —————— Ziq1

! |

Spec(k) —— LSE" /BG, == H}(X) x QoHZ(X)

We now obtain the result by induction from the previous step.*°
O

4.6.5. An extended digression: divergent series via categorical traces. We explain a general format for
thinking about the above proof of Lemma 4.6.4.1. This material is informal and may be skipped. However,
we believe it is an important philosophical point that we wish to highlight.

Roughly speaking, the idea is that so-called categorical functional analysis (e.g., fine considerations about
distinctions between Perf and Coh) relate to actual analysis (e.g., summing infinite series) via categorical
traces. Strikingly, we will see that Hochschild homology allows us to sometimes “correctly” evaluate infinite
sums without ever mentioning a topology on the field e in which they occur.

We consider the following geometric setup. Let Y be an algebraic stack (over e), which we assume is
quasi-smooth and QCA. Assume Y is equipped with a self-map ¢ : Y — Y. The functor:

Ty : QCoh(Y) — IndCoh(Y)
F—TF ® wy
Oy

preserves compact objects and intertwines the self-maps ¢* and ¢' of the source and target. Moreover, this
functor is a morphism of QCoh(Y)-module categories.

49We note that by purity, there is a canonical such splitting compatible with Frobenius.
50Formally, the induction should be done on K-theory classes, generalizing (4.11). We map to Hochschild homology only at
the end.
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Now recall (e.g., [15] §3.8.8) that for a dualizable QCoh(Y)-module category € with an endofunctor
T : € — C suitably compatible with ¢*, there is a canonical object:
tr°"(T) € QCoh(Y?)

with the basic property that T'(Y, tr*""(T)) = tr(T') € Vect. This construction satisfies the usual functoriality

properties for traces. We have:®!

£ren (%) = Oy
frenh (') = Wy
and then Yy yields a canonical map:
7 Oyo =t (%) — tr°™(¢') = wy € QCoh(Y?).

(This map 7 can be thought of as a weak Calabi-Yau structure on the derived fixed points.)

We let Y#800d < Yo denote the locus of points where 7 is an isomorphism. Note that Y#:2°°d contains
(Ys™)? (the fixed points of the smooth locus of Y) but in general is larger: one can in fact verify that Y#-&ood
is exactly the quasi-smooth locus of Y?.

Now, any perfect object F € Perf(Y) with a self map a : F — ¢*(F) yields a class:

Cl(?, a)QCoh(‘j) € QOOF(9¢, O)

i.e., a function on the fixed points Y% of ¢. In this notation, we use the subscript cl(—, —)qcoh to emphasize
that we are considering F as an object of QCoh (this will be an important distinction soon). This function
can be understood quite explicitly; at a point y € Y®, we take the trace of the resulting map:

(4.13) By y*(F) = y* (6% () = ¢(»)*(F) ~ y*(I)
where the last isomorphism uses the identification y ~ ¢(y) implicit in y being a fixed point. In other words,
we have:

cl(F, a)acon(y) = (y = tr(By)).

Now suppose instead that F € Coh(Y), though still equipped with a map « : F — ¢*(F). Because F may
not be compact in QCoh(Y), we cannot form its class in I'(Y®,0) any longer. However, we can twist and
form F ® wy, which lies in Coh because Y is quasi-smooth (so Gorenstein). We then obtain a map:

d=a®id: FRuy — ¢*(F) Quy = ¢ (FRwy).
Therefore, we can form the class:
A(F @ wy, @)indcon € L(Y?,w?).
Tautologically, in the special case where F € Perf(Y) < Coh(Y), we have:
(414) C1(3'~® wy, a)mdcoh = T(Cl(gr, a)QCoh)~
Following this equation, we define the regularized class:
cI™8(F, a)qeon € NPT(Y*5°04, 0)

as the image of cl(F ® wy, &)indcor under the composition:

T(Y%,w) — D(Y#e0d ) = T(yoeood o).

By construction, this regularized class coincides with (the restriction to Y#8°°d of) cl(F, a)qcon when F is
perfect.

Suppose y € Y. The map (4.13) still makes sense. However, if F is not perfect near y, then while the
complex (4.13) is finite-dimensional in each degree, it is unbounded from below, so the trace of 3, is not well
defined. We define the regularized trace:

trreg(lgy) = (Clreg(fr, Oé)QCoh)(y>

511 this formula, we consider wye as an object of QCoh, not of IndCoh. In other words, we implicitly are taking the “true”
dualizing sheaf in IndCoh and applying the forgetful functor ¥ : IndCoh(Y?) — QCoh(Y?) to it. As wys is a line bundle, this is
a quite mild thing to have done, so we do not specifically demarcate it in the notation.
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as the value of the regularized class at y € Y®.
Heuristically, the regularized trace can be thought of as assigning an actual value to the infinite sum:

(4.15) D= e (HY(By)) : H (y*(F)) — H'(y*(9)) e e

i€z
where we reiterate that the summands are each well-defined, the summands vanish for ¢ » 0, but generally,
an infinite number of summands appear.

EXAMPLE 4.6.5.1. Let us explain how this works in the simplest possible case. Suppose Y = QyA' and
¢ is multiplication by a number X € e. Take the sheaf F to be Og, the structure sheaf of the point 0 € QA
Note that 0 is canonically a fixed point of ¢, so we can think of 0 as a point of Y. By a standard calculation,
0*(0p) has 1-dimensional cohomology in even non-positive cohomological degrees and vanishing cohomology
outside these degrees; moreover, the map By acts on H~2¢(0*(0y)) as multiplication by ‘. Therefore, the
sum from (4.15) is the geometric series Y}, A". We emphasize that this is a formal expression; at the
moment, A is an arbitrary element of the field A and is in no sense “small.”

Now suppose A # 1. Then 0 € Y#:8°°d (in fact, Y##°°d = Y® = Spec(e) = {0}). Then the regularized
trace tr'°8(0y) is well-defined, and the (completely elementary) argument from Step 1 from the proof of

Lemma 4.6.4.1 calculates: )
trres = —.
' (5o) -\

In other words, we have given direct, purely algebraic meaning to the geometric series formula Y, \*“=

» 1
T—x
which usually requires us to know A" ‘=" 0 in some suitably analytic sense.

REMARK 4.6.5.2 (Regularized traces and functional equations). Suppose now that ¢ : Y — Y is in fact
an isomorphism. Then ¢* = ¢' (say, as functors restricted to Perf or Coh). Therefore, for F € Perf(Y) with
a:F — ¢*(F), we also obtain a mp o’ : F — ¢'(F). For y € Y®, we obtain a canonical map:

T Y () = ¥ ()
defined in the same way as 3,. As JF is perfect, we have:
¥(F) =y (T Rwy @uwy') =¥ (FQwy) ®y*(wy') = y*(F) @ y*(wy)®".
This map intertwines v, (for F) with 8, (for both F and wy). If we set €, to be the trace of the map:
y*(wy) = y* (wy)
constructed using 7, (and the obvious isomorphism wy =~ ¢'(wy) = ¢*(wy)), we find:

€y - tr(7yy) = tr(By).

Now we can define tr**&(v, ) exactly as we did for coherent F when y € Yyé.good  We obtain a tautological

“functional equation:”
€y - tr7°8 (7)) = tr'°8(3,)
(where €, is thought of as an e-factor).

Let us see how this logic plays out in the setting of Example 4.6.5.1. We should have A # 0 so that
¢ is an isomorphism. We note that 0!(00)} has cohomology in even non-negative degrees, and the action of
70 on H?(0'(0p)) is multiplication by A~%. Also, 0*(w) = e[—1] with “y” operator multiplication by A~*.
Therefore, the regularized trace tr'®8(vg) heuristically makes sense of the sum:

trreg(,)/o)u:» Z )\—i
i=0
while ¢g = —A71L.
Therefore, in this case, our functional equation heuristically yields:

_)\—1 Z )\—i LL:??EO trres (,70) — tr'es (60) “_» Z )\i.

=0 =0
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This resulting equation —A~! 2lis0 AThe= Dlis0 A\ is a favorite from the world of divergent series; over C,
the left hand side is defined for |A| > 1 while the right hand side is defined for |[A\| < 1, but, of course, the
analytic continuations of these two functions coincide on their domains.

We note that this sort of manipulation with divergent series is closely related to the functional equation
for the (-function of an algebraic curve.

REMARK 4.6.5.3. It would be of great interest to interpret categorically some analytic aspects of the
analytic theory of automorphic forms over function fields using some version of the above ideas.

4.6.6. Variant. In practice, we need a slight extension of the discussion of §4.6.4.

Let H be a unipotent group as before, and now let S be a torus acting on H by automorphisms. (In
practice, S = T acting on H = N.) For brevity, we let @ denote the semi-direct product S x H.

In this case, we define a rational map:

Cxms:S-— Al
via the formula:
det (id — Adg-1 ®px —~ h® HE (X))
det (id — Adg-1 ®px ~h® HZ (X))
Here ¢ x is the Frobenius acting on étale cohomology of X while we abuse notation somewhat in letting Ad_
denote the action of S on h coming from the action of S on H.

(seS)—

REMARK 4.6.6.1. Note that (% ¢ is defined at 1 € S and takes the value Cx (1)4mH there (see Lemma
46.4.1).

REMARK 4.6.6.2. Suppose i1, ..., i : S — G, are the characters of S appearing in its representation
b, counted with multiplicities (so r = dim(H)). Then we have:

s (5) = HC& (ni(s™1)).

In particular, the domain of definition of (% ¢ is nif{s € S | wi(s) # ¢}, and (% y g is (defined and)
invertible on n;{s€ S| ui(s) ¢ Rx}.

It will be convenient also to introduce the notation:

px.m.s(s) = det (id = Adyr ®bx —~ h® HE (X)) = [ [px(mi(s™))
i=1

QX,H,S(S) = det (id—Ads—l Rpx — b@Hth(X)) = H(l —-q- ui(s_l))
1=1

PX,H,S

ax,H,s "

so px,m,s and gx m,s are (regular) functions on S with s =
We introduce the notation:
LS5 == LSi™  x BS = (LS™)/S.

restr
LS

We observe that Lsgfg is a quasi-compact algebraic stack (by unipotence of H). We let LS"S};"“ denote the

Frobenius fixed points of Lngg. Explicitly, we have:
ad
LSEie™ = LSg™ x §/8.

arthm
LS

We let 71 : BQ — LSrQe;Sgr denote the evident map.

thm,o
Sar 5
S

ad ~
REMARK 4.6.6.3. To be more explicit, we remind that S /S5 — L by Theorem 4.3.3.1, recalling
arthm

that S is a torus. Therefore, LS¢) g™ is the connected component of the identity in LS"gthm.
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LEMMA 4.6.6.4. There exists an equivalence:
ax,m,s - A" (0Bq) @) = px s - l(Opgigerr, @) € QPT(LSH ™, w).

REMARK 4.6.6.5. Informally, the lemma should be understood as saying:

Cl(T{TiCOh(OBQ)a @) =~ G((,H,S ’ CI(OLsgfgm @)

PROOF OF LEMMA 4.6.6.4. The proof is essentially identical to that of Lemma 4.6.4.1. The differences
are as follows.

First, in Step 1, one should assume V and W are S-representations, and one should account for the
S-action in (4.11). That the dual representations V'V and W appear in (4.11) accounts for the appearance
of s~! rather than s in the definition of (% 5 ¢ above.

Second, one should note that the subgroups H; from the proof of Lemma 4.6.4.1 can be taken to be
invariant under the S-action (proof: diagonalize the S-action on b/[h, h] and proceed by induction).

Otherwise, the argument proceeds verbatim.

O

4.7. Conclusion. We now return to the setting of §4.5.
4.7.1. Let LS%"?;’;O < LS¥™™ denote the non-vanishing locus of d;.
We have a rational function:

. Cx, N7

cad . ~ ~
LS;:thm’o Thm.:4.3.3.l T,T=TxBT EZN T 250 Al

that is clearly defined and invertible on LSaTr’fs};“;O. By abuse of notation, we also let (y y ¢ denote the

resulting map:

. arthm 1
Cxn i LSFs %0 = AN

4.7.2. We now prove the following result:

THEOREM 4.7.2.1. There is a commutative diagram:

arthm arthm — is®Pec =2d non-res
F(LST,E};V,#mw) I F(Ls’fth 7w)[5T1] E4> F(( /G) 7w)
id
2T<X,N,T'_ \
- is"Pec,toy ~ad — =2d non-res
D(LS§ M, w) = T(LSFM™ w)[0:] —= DG/ G,w)[(0g 0 7)™ == T((G/ G)ror,w).

Using Corollary 3.7.2.1, this clearly yields the desired surjectivity from §4.5.6. Therefore, it remains to
prove this theorem.

PROOF OF THEOREM 4.7.2.1.

STEP 1. The commutative diagram:
BB % LSt
mey lp
BG % LSt
of stacks under proper morphisms yields an identification of the resulting two functors:
Rep(B) — IndCoh(LS5™)

preserving compact objects.
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Passing to traces of Frobenius, this yields a commutative diagram:

DB B,w) —— TLSYH™ )

(4.16)
ot

(G ) — D(LSE™, w).
STEP 2. Next, form the commutative square:

BB 2 LSt

]

BT — 7 LSyt

We obtain a natural transformation:

#,IndCoh IndCoh IndCoh _toy,%,IndCoh

q T* —)TB,* q

of functors:
Rep(T') — IndCoh(LS'5*").

But this functor is not an isomorphism, so mere functoriality of traces has little to say about it.
Still, we claim that we have a commutative diagram:

wad - Px,N,T ad . tr(q ¥ IndConlndCon) o
F(T )T, w) S AN F(T / T’w) J F(LSE‘B‘ m)w)
(4.17) |
J tr(rgaCoh gty ¢ IndCoh)
DT w) —221 7 DI T, w).

To construct this diagram, note that the maps are naturally morphisms of F(LSi}fthm, 0)-modules. This
vad .
algebra clearly acts on I'(T' / T',w) (the source of the diagram we wish to construct) through its factor:

(LSt 0) = T(T'T, 0).

Therefore, it suffices to produce a commutative diagram:

Lad . Px N .ad . tr(g¥indCondCen) th proj arthm,o
0T T,w) . rr/7w ————— (LS w) — F(LSB L, w)
vat‘i‘ . dx N7~ ~ad - tr(TE‘dSkOh toy,*,lndCoh) h proj tL o
T T w) —2T I‘(T T w) —F 1"(LSj”§r'C W) — ]."(LS%r W)

vad .
of (T /T, 0)-modules (as LS?Sft]mm’O = Lgythm X L garthm LS?thm’o).
ad
Recall that the dualizing sheaf on H ; H is canonically trivial. This trivialization can be constructed
as follows: the equivalence QCoh(BH) => IndCoh(BH) gives an isomorphism on Hochschild homology

ad ~ d ad
I'(H,H,0) — I‘(Ha/ H,w). Let voly € Q®T(H / H,w) denote the resulting generator — explicitly, it is the
class of the identity object of Rep(H). Therefore, to produce the above diagram, it suffices to provide an
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isomorphism:®?

Px.x.7 - PrOj (tr(q*,lndCOhT;iCOh)(VOIT)> _
5,1+ D10 (r(rigeCohglor = Co) (vol,) ) € QT (LS, ).
By construction, we have:
tr(Tgfifohqtoy,*,lndCoh)(VOIT) _ Cl(TEiCOhOBB’ a) c QwF(LSgthm,w).
Similarly, by base-change, we have:

tr(q*,lndCohT;iCoh)(Volf) = cl(OLSrgstr p— a) = CI(OLSlg?%x', a) € QwF(LsgthmM)_
So the identity follows from Lemma 4.6.6.4, reminding that LS%' ™ = Lsgthm’o (see Remark 4.6.6.3).

STEP 3. Concatenating diagrams (4.16) and (4.17), we obtain a commutative diagram:

IndCoh

Lad - o he— Lad . tr(7.; ; spec
F(Ta/ T, w) Px N, T F(Ta/ T, w) 77 F(Ls%—,rthm, w) Eis®P F(Lsgthm’ w)
cad - ax N7 cad + EissPec:toy cad « tr("'g‘?:}h arthm
T/ 7w ———I'(T)T,w) NG/ G w)., —————— I(LSE™, w).

This diagram refines the theorem we were supposed to prove.
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