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An arithmetic application of geometric Langlands

Sam Raskin

Abstract. Vincent Lafforgue has constructed a Langlands decomposition of the space of cuspidal auto-
morphic functions for function fields. In our joint work with Arinkin, Gaitsgory, Kazhdan, Rozenblyum,
and Varshavsky, we showed that a version of the geometric Langlands conjectures yields a description of the
eigenspaces of Lafforgue’s decomposition in the everywhere unramified case.

In this note, we give an overview of the latter circle of ideas. We then explain how to use these methods
to show that geometric Langlands implies that there are no everywhere unramified cusp forms with trivial
Langlands parameter, addressing a question of Michael Harris.

Of some independent interest, we calculate a spectral analogue of pseudo-Eisenstein series near the
trivial Langlands parameter in some explicit terms. In suitable coordinates, we find it is a product of the
Weyl character formula with a zeta factor related to the curve.

1. Introduction

1.1. Background and goals.
1.1.1. In our joint works [2], [3], and [4] with Arinkin, Gaitsgory, Kazhdan, Rozenblyum, and Var-

shavsky, we formulated a conjectural spectral decomposition of unramified, compactly supported automor-
phic functions. This conjecture was also found by X. Zhu in [32].

Our spectral decomposition, inspired by V. Lafforgue’s breakthroughs [22] and by the geometric Lang-
lands conjecture of Beilinson-Drinfeld, is of Langlands type, but of different nature: it describes all (compactly
supported) automorphic functions, not merely eigenforms, and it yields both reciprocity and functoriality
statements without explicitly incorporating either into its formulation.

One major purpose of our work was to show that the spectral decomposition actually follows from an
ℓ-adic version of the geometric Langlands conjecture.

1.1.2. In advertising our joint work, including in my talks at IHÉS, I have tried to argue that our
conjecture yields new insights into automorphic functions that should be of interest to number theorists.
Our conjecture is most manifestly satisfying around discrete (alias: elliptic) Langlands parameters (cf.
Example 2.4.5.1). But I have been hard pressed to give precise, concrete consequences near other Langlands
parameters.

For instance, our conjecture as is does not immediately reproduce the Arthur multiplicity formula for
discrete series. Further development of the theory is needed to understand such forms.

1.1.3. With that said, the main new contribution of this note is to give a simple, concrete application
of our work to automorphic functions, answering a question of Michael Harris. The assertion statement
concerns the trivial Langlands parameter, which is essentially as far from discrete as possible.
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1.1.4. In addition, befitting conference proceedings, in §2 we provide some introduction to the geometric
Langlands program and the circle of ideas developed in [2], [3], and [4]. These two parts of the paper can
be read essentially independently.

The reader who is most interested in this survey material might skip ahead to §2; as that material is by
its nature introductory, the emphasis of the remainder of the introduction is on the problem considered in
the latter part of the paper.

1.2. Statement of the main result.
1.2.1. Setting. We fix Fq a finite field of characteristic p and let k “ Fq denote its algebraic closure. We

let ℓ ‰ p be a fixed prime and let e denote Qℓ; this is the field of coefficients in the terminology of [2]. We
fix G{Fq a split reductive group and let Ǧ{e denote its Langlands dual group.

Let X0{Fq be a smooth, projective, and geometrically connected curve, and we let X “ X0 ˆFq
k denote

its base-change to k.
We let F “ FqpX0q denote the global field associated with X0. We let A denote its ring of adèles and

let O Ď A denote the subring of integral adèles.
We let AutunrG,c denote the space of everywhere unramified, compactly supported automorphic function for

F . By definition, this means that Autunrc is the vector space of functions:

GpF qzGpAq{GpOq Ñ e

with finite support. We let Autunrcusp Ď Autunrc denote the subspace of cuspidal automorphic forms.1

1.2.2. We fix once and for all a k-point ofX to use as the base-point for our fundamental groups; we omit
it from the notation.2 We let πét

1 pXq denote the étale fundamental group of X, we let πarthm
1 pXq :“ πét

1 pX0q
denote the arithmetic fundamental group, and we let WX :“ πarthm

1 pXq ˆ
pZ Z denote the Weil group of X

(considered with its standard topology, so that πét
1 pXq Ď WX is open).

Notation 1.2.2.1. For definiteness: we always use geometric Frobenius conventions. So we have iden-

tified pZ » πét
1 pSpecpFqqq with generator of pZ corresponding to the geometric Frobenius element.

1.2.3. Lafforgue-Langlands decomposition. For the moment, we assume that G is semisimple to simplify
the discussion. (The body of the paper works with general reductive groups.)

A Langlands parameter is a continuous homomorphism ρ : WX Ñ Ǧpeq. A Langlands parameter is
semi-simple if for any parabolic P̌ Ď Ǧ such that ρ factors through P̌ peq, there exists a Levi factor M̌ Ď P̌
so that ρ further factors through M̌peq (see [2] §3.5-3.6).

We now remind that [22] constructed a decomposition:

(1.1) Autunrcusp » ‘
rσs

Autunrcusp,rσs

where rσs runs over conjugacy classes of semi-simple Langlands parameters.

Remark 1.2.3.1. The above applies just as well for ramified automorphic functions. Our main results
are restricted to the unramified setting, so we have chosen simply to emphasize the unramified setting
throughout this text.

1.2.4. The main result in this note is the following:

Theorem A. Let G be semi-simple (and not the trivial group). Let triv : WX Ñ Ǧpeq denote the trivial
Langlands parameter, i.e., the constant map with value the identity.

Assume the restricted geometric Langlands conjecture of [2] with its compatibility with Eisenstein series.
Then the summand Autunrcusp,rtrivs Ď Autunrcusp is zero. In other words, there are no unramified cusp forms

with trivial Langlands parameters.

1We remind the reader of the well-known fact that over function fields, cuspidal automorphic forms are a priori compactly
supported.

2It is better to think in terms of the category of lisse sheaves on X, as we often do. We use πét
1 simply to make some points

of our discussion more concrete.
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Remark 1.2.4.1. Although we do not emphasize this in the text, one can get by with less. Namely,
according to [2] Corollary 14.3.5, ShvNilppBunGq breaks up as a sum over semi-simple Ǧ-local systems on
X. One only needs restricted geometric Langlands for the trivial local system. We expect forthcoming work
to completely address this problem.

Remark 1.2.4.2. Roughly speaking, the argument goes as follows. In §3, we discuss what Eisenstein
series corresponds to on the spectral side of arithmetic Langlands. Then in §4, we provide local coordinates
on LSarthmǦ near the trivial local system (see Theorem 4.3.3.1) and then explicitly calculate spectral Eisenstein
series in these coordinates (see Theorem 4.7.2.1). From here, the result is essentially obvious (see Lemma
3.7.1.1).

Remark 1.2.4.3. We remark that one key point of the proof of Theorem 4.7.2.1 suggests a relationship
between manipulations with certain divergent series and categorical trace methods. We spell out our ideas
on this subject – such as they are – in §4.6.5. This material can be read essentially independently of the rest
of the paper.

1.3. Some comments.
1.3.1. Motivation I. The vanishing of Autunrcusp,rtrivs is an ingredient in forthcoming work of Beuzart-

Plessis–Harris–Thorne studying the local Langlands correspondence for function fields via the trace formula.
The above theorem leaves their results conditional on the geometric Langlands correspondence, on which a
great deal of progress has been made in recent years.

1.3.2. Motivation II. For G “ PGLn, any cusp form has irreducible Langlands parameter, i.e., in this
case Autunrcusp,rσs “ 0 unless σ is irreducible; we refer to [22] Lemma 16.4 for a recent treatment (following

parts of [20]; see the statement of [20] Theorem VI.9 in particular).
However, for general G the situation is more complicated: cusp forms may have reducible Langlands

parameters; this is related to the failure of the Ramanujan conjecture for these cusp forms.
Still, Arthur’s conjectures provide some restrictions on the σ’s that may appear. First, note that there is

a canonical map WX Ñ Z
1 ÞÑq´1

ÝÝÝÝÑ eˆ that we denote γ ÞÑ |γ|; choosing
?
q P eˆ, we then obtain a canonical

map:

(1.2)

WX Ñ WX ˆ SL2peq

γ ÞÑ
´

γ,

ˆ ?
|γ| 0

0 1?
|γ|

˙

¯

.

Arthur’s conjectures predict that Autunrcusp,rσs will be zero except possibly when σ extends along (1.2) to an

irreducible representation of WX ˆ SL2 into Ǧ.3

1.3.3. Suppose we are given such an Arthur parameter σ7 : WX ˆSL2 Ñ Ǧ, and suppose its restriction

to πét
1 pXq is trivial, so we have a map σ7 : Z ˆ SL2 Ñ Ǧ. Let f P ǧpeq denote the logarithm of σ7

´

0, p 1 0
1 0 q

¯

and let F P Ǧpeq denote the image of
´

1,
´

1?
q 0

0
?
q

¯¯

. Note that F encodes the underlying Langlands

parameter of σ7, and also note that AdF pfq “ qf . We also note that f must be non-zero, or else σ7 will not
be irreducible.

We then arrive at:

Conjecture 1.3.1. Suppose F P Ǧpeq is a semisimple element and let σF : WX Ñ Ǧpeq denote

the corresponding Langlands parameter WX Ñ Z
1 ÞÑFÝÝÝÑ Ǧpeq. Then Autunrcusp,rF s is trivial unless q is an

eigenvalue of AdF : ǧ Ñ ǧ.

Remark 1.3.3.1. Of course, q can be replaced by q´1 in this conjecture (apply the Cartan involu-
tion on Arthur’s SL2), which partially reflects the invariance of the conjecture under modifications of our
normalizations (like geometric vs. arithmetic Frobenius).

3Formally, this means we have a map SL2 Ñ Ǧ over e and a continuous map WX Ñ Ǧpeq whose image commutes with the

image of SL2peq Ñ Ǧpeq.
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Assuming geometric Langlands, we will prove something close to this conjecture. Namely, we will
show that Autunrcusp,rσF s “ 0 unless AdF has an eigenvalue equal to a Frobenius eigenvalue appearing in

H1
étpXqˆH2

étpXq; as q is the Frobenius eigenvalue on H2
étpXq, this is somewhat stronger than the hypotheses

of the conjecture. We remark that the case where F is the identity yields Theorem A.

1.4. Conventions and notation. Our hope is that this note can serve as a point of entry to the long
papers [2], [3], [4]. We have provided some background in §2. We also refer the reader to the introduction
of [2] for more background on the subject. We have also aimed to include precise citations whenever we use
technical results from these papers with the hopes that this can help the reader navigate these works.

We generally maintain the conventions and notation of [2]; we refer to §0.9 in particular. We work over
the geometric field k “ Fq for geometry of the curve X, its moduli stacks BunH of H-bundles, and so on,

and we use the characteristic 0 coefficient field e “ Qℓ for geometry of local systems. Outside of §2, we have
k “ Fq. The geometry over k is classical algebraic geometry, while the algebraic geometry over e is derived.
We use higher categorical methods. Our DG categories are assumed to be enriched over e-vector spaces.

For an algebraic stack Y over k locally of finite type, we let ShvpYq denote the DG category of e-sheaves
on Y (see [15] A.1.1 (d’)). We let qLissepYq Ď ShvpYq denote the subcategory of quasi-lisse complexes as in
[2] Definition 1.2.6; these are objects whose (perverse, say) cohomologies are colimits of lisse sheaves (in the
usual sense).

We generally refer to 8-categories simply as categories to simplify the terminology.
We let DGCatcont denote the category of cocomplete (and accessible) DG categories under continuous

DG functors. We consider DGCatcont as equipped with Lurie’s tensor product. We let Vect P DGCatcont
denote the DG category of e-vector spaces, which is the unit for the monoidal structure.

For C a DG category, we let Cc denote its subcategory of compact objects. When C has a t-structure,
we let C♥ (resp. Cď0, resp. Cě0) denote the heart of the t-structure (resp. the subcategory of connective
objects, resp. the subcategory of coconnective objects).

We refer to [15] for background on categorical trace methods.
For H an affine algebraic group over e, we remind that there is a moduli stack LSrestrH “ LSrestrH pXq over

e of H-local systems (with restricted variation) on X. Recall that an H-local system is simply a t-exact
(equivalently: right t-exact) symmetric monoidal functor ReppHq Ñ qLissepXq (equivalently: a symmetric
monoidal e-linear functor ReppHq♥,c Ñ LissepXq♥). Therefore, we define the stack LSrestrH to parameterize
right t-exact symmetric monoidal DG functors ReppHq Ñ qLissepXq; more precisely, the S “ SpecpAq points
of LSrestrH are the groupoid of right t-exact symmetric monoidal functors ReppHq Ñ A-modpqLissepXqq.

Pullback along geometric Frobenius FrobX : X Ñ X defines a map LSrestrH Ñ LSrestrH that we also call

Frobenius.4 Its Frobenius fixed points are by definition the stack LSarthmH , which (tautologically) parameter-
izes right t-exact symmetric monoidal functors from ReppHq to quasi-lisse Weil sheaves on X.

Finally, we always assume p “ charpkq satisfies the (mild) assumptions from [2] §14.4.1.

1.5. Acknowledgements. I am grateful to Michael Harris for raising this question. I also thank
Sasha Braverman and Dennis Gaitsgory for their interest and for helpful conversations on this subject. I
thank Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Nick Rozenblyum, and Yasha Varshavsky for their
collaboration on this subject and to Vincent Lafforgue and Cong Xue for related discussions.

Finally, I thank the organizers of the 2022 Summer School on the Langlands program at IHÉS for the
invitation to speak and for their extraordinary patience with me while writing this article.

2. AGKRRV theory

We begin with a general overview of the works [2] and [4] and some of the background material.
These works are admittedly technical. We do not intend here to provide an overview of each bit of

the technical background needed for those works. However, we have tried at least to explain why certain
technical issues arise (e.g., the need for derived algebraic geometry). But in this vein, we freely appeal to

4Note that this map is a map of stacks over e. The Frobenius for LSrestrH can be thought of as a non-abelian/non-linear
version of Frobenius acting on the (e-vector space of) étale cohomology of X.
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foundational ideas in the subject that may not be familiar to all readers: stacks, DG categories, D-modules,
ℓ-adic sheaves, and IndCoh stand out. Although these subjects are technical and not always widely known,
these days there are many references (and generous experts), and we think the interested reader should
readily find resources to pursue their interest in the background material that comes up in the discussion.

This section is structured as follows. First, in §2.1, we explain a bit how someone interested in auto-
morphic functions should regard about the de Rham (or D-module) geometric Langlands conjecture, and
we highlight some nice pleasant features of the latter subject in comparison with the former. In §2.3, we
explain the restricted geometric Langlands correspondence; one side involves moduli theory for ℓ-adic local
sheaves, which we explain in §2.2. In §2.4, we explain how the story develops working over finite fields, when
Frobenius is considered. Finally, in §2.5, we describe how our main arithmetic result (from [4]) is proved,
emphasizing the key role played by Xue’s work on sheaves of shtuka cohomologies.

2.1. Arithmetic and geometric Langlands.
2.1.1. Arithmetic Langlands. Conventional arithmetic Langlands concerns automorphic representations,

which by definition are certain irreducible representations appearing in a suitable space of automorphic
functions.

A crude (and perhaps vulgar) form of the Langlands philosophy predicts that automorphic representa-
tions for G correspond to Langlands parameters for Ǧ. There are corrections that are not quite our emphasis
here: Arthur parameters should be used, L-packets appear, for number fields there is not a suitable definition
of Langlands parameter (or Langlands group), and so on. What is our emphasis is the atomic nature of
the conjecture: the basic objects are irreducible subquotients of a space of functions, not the function space
itself.

2.1.2. Geometric Langlands. By contrast, the conventional form of the geometric Langlands conjecture
predicts that:

(2.1) D-modpBunGq » IndCohNilpspecpLSdRǦ q « QCohpLSdRǦ q.

In the above formula, IndCohNilpspec is a suitable enlargement of QCoh defined by Arinkin-Gaitsgory and
discussed a little more in §2.1.11.

Since the conference primarily concerns arithmetic aspects of the Langlands program, we digress for
some time to explain some starting features of the geometric setting, including the notation used above and
some ways of thinking about the main objects that appear there.

This form of the geometric Langlands conjecture is due to Beilinson-Drinfeld and Arinkin-Gaitsgory,
see [1] and [13] for an introduction to this circle of ideas. We will refer to it as the de Rham geometric
Langlands conjecture because the theory of D-modules remembers de Rham’s cohomology groups.

2.1.3. The input for geometric Langlands conjecture is a smooth projective curve X{k for a fixed field
k. We assume k is algebraically closed to simplify certain points, although this is not fundamentally essential
in the de Rham setting.

Then BunG is the space of G-bundles on X. More specifically, BunG “ BunGpXq is a stack whose
functor of points is given by:

BunGpSq :“ HompX ˆ S,BGq “ tG–bundles on X ˆ Su

where S is an affine scheme and BG is the classifying stack of G. It is standard that BunG is a smooth
algebraic stack locally of finite type, although it is not quasi-compact.

A lovely formula due to Weil5 says that:

(2.2) BunGpkq “ GpF qzGpAq{GpOq

5This formula is essentially obvious once one knows that G-bundles are Zariski (not merely étale) locally trivial on smooth
projective curves. For GLn, this follows from descent. For other groups, this is Steinberg’s theorem.

We remark here that the theorem also holds over finite fields, as is often implicitly taken for granted in the subject. For
simply-connected G, this is a theorem of Harder [19]. In general, one takes a surjection G1 Ñ G with G1 having simply-connected
derived group and KerpG1 Ñ Gq being a (connected) torus; then G-bundles on X lift to G1 (by class field theoretic Brauer
group considerations), so we are reduced to Harder’s theorem.
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with O “
ś

xPXpkq Ox the ring of integral adèles (for Ox the ring of Taylor series based at x P Xpkq),

A “ colimSĎXpkq finite

`
ś

xPS FracpOxq ˆ
ś

xRS Ox

˘

the similarly defined ring of adèles, and F “ kpXq the
field of rational functions on X. Therefore, we can think of BunG as a geometric avatar of the double quotient
space where unramified automorphic functions would live (if we replaced k by a finite field).

2.1.4. A foundational analogy in geometric representation theory says that when k is of characteristic
zero, the category of D-modules on a stack Y behaves like the space of functions on the set YpFqq of Fq-points
of Y, if such a thing makes sense.6

There are several justifications of this idea. First, for k “ C, some D-modules are related to constructible
sheaves by the Riemann-Hilbert correspondence, which are in turn related to étale sheaves by the Riemann
existence theorem, which for k “ Fq are in turn related to functions by the Grothendieck-Deligne sheaves-
functions correspondence.7

Alternatively, one can imagine that D-modules encode linear systems of differential equations whose
solutions define functions (or distributions) on YpCq, which are analogous to functions on YpFqq for different
reasons.

In practice, it is important in this analogy to work with all D-modules on Y. For example, the Mellin
transform in this setting is an equivalence D-modpGmq » QCohpA1{Zq; it can be thought of as a simplified
toy model geometric Langlands-style equivalences. Under the Mellin transform, neither holonomic nor regular
holonomic objects on the left hand side have reasonable descriptions on the right hand side. One takes this
as a sign that one should work with the category of “all” D-modules in geometric representation theory
rather than a constructible sort of subcategory.

Moreover, by [24], for G “ Gm, the equivalence (2.1) does not come from an equivalence of abelian
categories; that is, it is necessary to work with derived categories in this analogy. Per the modern under-
standing, we use DG categories in the homotopical formalism of 8-categories; we generally abide by the
convention that our DG categories should have all direct sums and functors between them should be linear,
exact, and preserve direct sums. The advantage of the homotopical formalism is that it eases the founda-
tional burdens of the subject by introducing algebraic tools – we speak can fluently of monoidal categories,
module categories, tensor products, and so on most readily in this language.

Example 2.1.4.1. Per the previous discussion, one considers D-modpBunGq as analogous to the space
Autunrc of unramified automorphic functions.

2.1.5. Let us pause a bit further to discuss the analogy between categories and vector spaces further.
The origin can be thought of as follows: for Y{Fq defined over Fq, a constructible Weil étale sheaf F on

Y gives rise to a function on YpFqq by taking the trace of Frobenius on the fibers at rational points, giving
a fairly general procedure for producing functions from sheaves. This is the usual source of the analogy
between sheaves and functions.

One can say that functions on a space form a vector space, while sheaves on a space form a category, so
vector spaces (of functions) categorify to categories (of sheaves).

2.1.6. One can make the previous discussion more precise.
Fundamentally, the source of functions in the previous discussion was that if we have a (finite-dimensional)

vector space V with a linear transformation T : V Ñ V , we can form trV pT q to obtain a number.
Similarly, for a (dualizable DG) category C with endofunctor T : C Ñ C, there is a trace trCpT q P Vect

associated to this datum; we refer to [15] for a detailed discussion of this construction. We wish to highlight
that – besides (maybe serious) psychological barriers around categories – the general construction is quite
formal and mirrors the usual theory of traces.

2.1.7. We now turn to more closely interpreting the geometric Langlands equivalence.

6For example, the reader can imagine Y is defined over Zr1{Ns for N prime to q. But I would encourage the reader not to
be so literal-minded on this point.

7We refer to the first sections of [28] “Applications de la formule des traces aux sommes trigonométriques” for background
on this notion.
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The space LSdRǦ “ LSdRǦ pXq is the moduli stack of de Rham Ǧ-local systems on X. In the field, the

stack LSdRH (for H{k an affine algebraic group) is conventionally defined as having S-points:

LSdRH pSq :“ HompXdR ˆ S,BǦq

where XdR is the de Rham space of X. It would be too digressive here to discuss the de Rham space in
detail, but its key point is that QCohpXdRq “ D-modpXq.

Less conventionally, one can proceed as follows. First, at the level of k-points: what is an H-local system
supposed to be? We could take qLissedRpXq Ď D-modpXq to be the subcategory of objects each of whose
cohomologies is a colimit of local systems, i.e., vector bundles with connections; this is a suitable derived
category of lisse D-modules, but we call them quasi-lisse to adhere to conventions from [2].

Then a de Rham H-local system is essentially a symmetric monoidal functor ReppHq Ñ qLissedRpXq;
this is not quite right since for H “ Gm, such a datum is a tensor-invertible object σ of qLissedRpXq, i.e.,
a cohomologically shifted line bundle with connection; to remove that ambiguity, we refine our definition
by asking that our functor be right t-exact after a cohomological shift r1s (to account for the fact that the
functor sends the trivial representation to the constant sheaf eX , which is in degree dimpXq “ 1). .8,9

We note that this definition then behaves essentially as expected: a de Rham GLn-local system is a
rank n vector bundle on X with connection; a de Rham SOn-local system is a rank n vector bundle E with
connection ∇ and non-degenerate symmetric pairing EbOX

E Ñ OX preserving the connections; a de Rham
Sp2n-local system is similar, but the non-degenerate pairing is anti-symmetric; a de Rham G2-local system
is an octonion bundle with connection; and so on.

This Tannakian definition of local systems – which is perhaps the simplest way to define local systems for
general algebraic groups – adapts to give S-points for LSdRH : its S-points are symmetric monoidal functors:

(2.3) ReppHq Ñ D-modpXq b QCohpSq

that are right t-exact up to shift by dimpXq “ 1.
We suggest the reader turn refer to [2] §4.1 for further related discussion. We briefly note that any

symmetric monoidal functor ReppHq Ñ D-modpXq lands in qLissedRpXq, although (2.3) will not generally

map into qLissedRpXq b QCohpSq.
2.1.8. Needless to say: for a number theorist, LSdRǦ is thought of as a moduli stack of Galois parameters.
Indeed, by (a very easy form of) the Riemann-Hilbert correspondence, for k “ C, there is an analytic

identification of Ǧ-local systems with homomorphisms ρ : π1pXpCqq Ñ ǦpCq up to conjugation (although
this does not work naively in S-families).

2.1.9. The next key piece of structure in the geometric Langlands conjecture is the spectral action.
This is the action of the monoidal category QCohpLSdRǦ q on D-modpBunGq constructed in [?] by Drinfeld-

Gaitsgory. According to loc. cit., this action is uniquely characterized by its compatibility with (a suitably
strong version of) the Hecke action on D-modpBunGq.

Here we refer to [?] §1.1 for a discussion of the uniqueness and [?] §1.5 for the precise connection to
Hecke functors.

8Of course, this issue arises only because of our insistence to work with derived categories, which the reader may take issue
with. In §2.1.12, we explain that it is necessary to use derived algebraic geometry in the story we are telling, so our affine test
schemes S should also be derived; the derived category QCohpSq is sensitive to derived geometry but not the abelian category

QCohpSq♥ is not.
In anticipation of these issues, we have made a pedagogical choice to stick with derived categories and right t-exact (up to

shift) functors.
9The reader might ask: right t-exact functors ReppHq Ñ qLissedRpXq are also t-exact (up to shift in both cases), so why

write “right” at all? The reason is that we will soon generalize this setting in (2.3). Say H is the trivial group there, so we
are talking about the symmetric monoidal functor Vect Ñ QCohpSq, which sends k to eX b OS for eX the constant sheaf.
After shifting by dimpXq, the latter is always connective (i.e., in cohomological degrees ď 0), but it is only in the heart of the
t-structure if S is a classical scheme, i.e., an object of “usual” algebraic geometry and not derived algebraic geometry.
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2.1.10. The spectral action can be visualized as follows.
Let Y be any stack and suppose C is a module category for QCohpYq. We draw this as a category fibered

over Y:

‚
y

Cy

Y

-

Here the fiber Cy at y is defined as:

Cy :“ C b
QCohpYq

Vect

if y is a k-point; if it is an A-point, replace Vect with A-mod. Heuristically, we might write C “
ş

yPY Cy dy.

This formalism was studied in great detail in [14].
So informally, the Drinfeld-Gaitsgory spectral action says that the category D-modpBunGq fibers over

LSdRǦ , and that this structure is canonically defined by Hecke functors. Therefore, the existence of the
spectral action can be interpreted as a (categorical) reciprocity law for the category of automorphic sheaves
(a phrase that means D-modpBunGq, at least in this de Rham context).

By definition, the fiber D-modpBunGqσ of D-modpBunGq at a point σ P LSdRǦ is the category of Hecke
eigensheaves with eigenvalue σ.

2.1.11. In the heuristic formula C “
ş

yPY Cy dy above, we imagine that we have a category-valued

measure Cy dy on Y. In cases of interest, we may wish to calculate it.

This is the job of the full geometric Langlands conjecture. The QCohpLSdRǦ q-module category IndCohNilpspecpLSdRǦ q
encodes an analogue of Plancherel measure under this metaphor.

Here the category IndCohNilpspecpLSdRǦ q of ind-coherent sheaves with nilpotent singular support was de-
fined in [1] and has been the subject of wide study in the field since then. It is a modification of QCoh of

geometric nature that reflects something about the singularities of LSdRǦ . We refer to [1] for an introduction

to this subject. We use Nilpspec Ď T˚r´1sLSdRǦ to denote the spectral nilpotent cone, remarking that it is
often denoted simply as Nilp in many other references.

Because irreducible Ǧ-local systems do not support non-zero nilpotent horizontal sections of their adjoint
bundles, we have:

QCohpLSdR,irred

Ǧ
q b
QCohpLSdR

Ǧ
q
IndCohNilpspecpLSdRǦ q “ QCohpLSdR,irred

Ǧ
q

(see [1] Proposition 13.3.3 for more details).

Under our analogy, this means that Plancherel measure is constant on LSdR,irred

Ǧ
with value Vect. Near

reducible local systems, there is a correction relating to nilpotent horizontal sections of the adjoint bundle,
which are avatars here of Arthur’s SL2.

2.1.12. We now give a quick example illustrating some basic technical points.
Suppose X “ P1 and G “ Gm. Then BunGm parameterizes line bundles on P1, so is isomorphic to

Z ˆ BGm: the Z-factor parametrizes degrees of line bundles while the BGm-factor encodes the fact that
every line bundle on P1 has automorphism group Gm (suitably understood in S-families).

Therefore, D-modpBunGm
pP1qq “

ś

nPZ D-modpBGmq.
The category D-modpBGmq can be calculated quite explicitly. Let π : Specpkq Ñ BGm be the structure

map, which we remind is a smooth covering. The functor π! : D-modpBGmq Ñ D-modpSpecpkqq “ Vect is
evidently conservative and admits a left adjoint π!. By base-change, the endofunctor π!π! of Vect is given
by tensoring with CdRpGmq, the de Rham homology of Gm. Moreover, by a simple form of Barr-Beck,
this endofunctor π!π! has a natural monad structure corresponding to the algebra structure on CdRpGmq
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coming from the group structure on Gm; moreover, the induced functor D-modpBGmq Ñ CdRpGmq is an
equivalence.

Finally, of course, CdRpGmq is a DG algebra which is a square-zero extension of k by a single generator
η in cohomological degree ´1 (aliases: a symmetric algebra on a generator in degree -1; a homologically
graded exterior algebra on one generator) — this is just reflecting the elementary fact that homology of the
circle is 1-dimensional in degrees 0 and 1.

So we have:

(2.4) D-modpBunGmpP1qq “
ź

nPZ

pk ˆ kηq-mod.

Naively, P1 is a simply-connected, so has no non-trivial local systems, so one might expect LSdRǦ pP1q to

equal BǦ (reflecting the non-trivial automorphism group of a trivial local system). For Ǧ “ Gm, we would
have QCohpBGmq “ ReppGmq “

ś

nPZ Vect, which is close to (2.4), but missing the generator in degree ´1.

In fact, this is because we were too naive. The derived stack LSdRǦ pP1q equals10 BǦˆǧ{ǦBǦ, which for

Ǧ “ Gm is just BGm ˆ p0 ˆA1 0q. Here it is important the fiber products be taken in the sense of derived

algebraic geometry. Then we find QCohpLSdRGm
pP1qq “

ś

nPZ QCohp0ˆA1 0q. Finally, we note that 0ˆA1 0 is

Spec of kbkrtsk (the tensor product being derived, i.e., including the information of the groups Tor
krts
i pk, kq),

which is the same square-zero extension CdRpGmq we saw before.
We remark that the underlying classical stack recovers our naive conception of LS from before.
Alternatively, one can see the utility of derived algebraic geometry as follows. For general X and Ǧ,

standard arguments say that the tangent space of LSdRǦ at a Ǧ-local system σ is H1
dRpX, ǧσq, the first de

Rham cohomology with coefficients in the adjoint local system of σ. More generally, we should expect the
tangent complex to be CdRpX, ǧσqr1s. As the above example illustrates, this formula is only possible in

general when LSdRǦ is interpreted as a derived stack.
In summary: we use derived algebraic geometry in the spectral side of geometric Langlands because it

produces right answers (unlike classical algebraic geometry) and because it yields more manageable infini-
tesimal geometry of moduli spaces.

2.1.13. Conclusion. Above, we briefly discussed arithmetic Langlands and gave a lengthier introduction
to (de Rham) geometric Langlands.

There is a key difference, which §2.1.1 already hints at: in arithmetic Langlands, we study atomic objects
(irreducible representations), whereas in geometric Langlands we study molecular objects (an analogue of
the space of automorphic functions). One may compare the situation with the Fourier theory on the circle
S1: the atomic theory says (necessarily unitary) characters of S1 are in bijection with Z, but the actual
Fourier theory says L2pS1q is a direct integral over Z of 1-dimensional Hilbert spaces (i.e., L2pZq). In the
automorphic theory, an analogue of the latter would be desirable, but the former is all we can access.

One starting point for [2] is an attempt to resolve this discrepancy, at least for function fields, at least in
the everywhere unramified case. In the end, we end up with an arithmetic perspective closer to the geometric
Langlands conjecture.

I wish to emphasize: our work is not the only one working on bridging this gap; [32] and [11] are closely
related efforts, and we all were inspired by V. Lafforgue’s breakthroughs [22].

2.2. Local systems with restricted variation: an introduction. There is an old desire to have
some kind of geometric Langlands for ℓ-adic sheaves instead of D-modules. One side is easier to imagine: we
should consider (certain) ℓ-adic sheaves on BunG instead of D-modules on BunG. The spectral side (i.e., the
LS-side) has been less clear, but the relevant geometry was developed in [2]. We now summarize the story.

2.2.1. What is the problem? Suppose now that k is an algebraically closed field and X is a smooth
projective curve over k. We let e :“ Qℓ.

We wish to imitate the general geometric Langlands story, but understanding local systems as lisse étale
e-sheaves rather than vector bundles with connection. What goes wrong?

10This formula comes e.g. from thinking of a local system on P1 as a pair of local systems on the two standard open A1’s
in P1 with an isomorphism on their intersection A1z0. We note that A1 is contractible, not just simply-connected.
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First, let us be maximally optimistic: we wish to have a stack LSétǦ “ LSétǦpXq that behaves like our

earlier stack LSdRǦ from before. Suitably understood, its points should be Ǧ-local systems, i.e., right t-exact

symmetric monoidal functors ReppǦq Ñ qLissepXq – here qLissepXq Ď ShvpXq “ ShvétpXq is understood in
the étale sense, as in §1.4.

As a preliminary step, note that the automorphism group of the trivial Ǧ-local system on X is Ǧpeq.
This suggests that LSétǦ should be defined over the field e and contain a copy of BǦ corresponding to the
trivial local system.

Remark 2.2.1.1. Here we see a basic bifurcation in the algebraic geometry of the geometric Langlands;

some objects, like X, G, BunG, etc. live over the ground field k, but spectral objects, like Ǧ, LS
p?q
Ǧ

, etc.
live over the coefficient field e. For the de Rham theory, the coefficient field is the ground field and this
distinction can be ignored.

2.2.2. Now let us suppose k has characteristic 0 and X has genus g ą 0.
Ignoring technical issues (stackyness, derived structures), we might first guess that LSétGm

would be

something like G2g
m over the field e. After all, the étale fundamental group of X has abelianization pZ2g.

Moreover, one can see that (neglecting the same technical issues), the stack LSdRGm
over C is complex ana-

lytically isomorphic to G2g
m pˆBGm ˆ 0 ˆA1 0q.

However, the difference between Z and pZ is key here. In point of fact, continuous homomorphisms
pZ2g Ñ eˆ are indexed by points in pOˆ

e q2g where Oe Ď e is its usual valuation subring of integral elements.

In other words, our hope LSétGm
“ G2g

m pˆBGm ˆ 0ˆA1 0q « G2g
m was too naive: the right hand side has too

many points over e!
Note that it is hard to find an interesting11 scheme over e with e-points Oˆ

e . So we give up on a nice

stack (say, connected and algebraic) LSétGm
existing.

2.2.3. One the other hand, deformation theory of étale local systems (alias: Galois representations)
is an old story. Usually one considers torsion coefficients, but we need not do so here. The basic point is
that for an étale local system σ, we have a DG Lie algebra CétpX, ǧσq, so has an associated formal moduli
problem (see [25] Chapter 13 and [18]).

In other words, although we gave up on LSétǦ existing, we do know its e-points (which are local systems
after all) and we do know its formal completion at each such point.

So at the moment, to form some approximation to LSétǦ , we can take a (typically uncountable) disjoint

union of the “formal completions of LSétǦ” at each e-point σ. This gives the right answer for Gm, but we
will construct something a little better for other groups (as will be discussed in the remainder of §2.2).

2.2.4. The definition. In [2], we define a prestack over e (i.e., functor from connective commutative e-
algebras to 8-groupoids, i.e., moduli problem) called LSrestrH for any affine algebraic group H{e. In general,
it remembers a little more than just formal neighborhoods of points, as we will see.

The definition is a naive imitation of (2.3); by definition, an S-point of LSrestrH is a right t-exact symmetric
monoidal functor:

ReppHq Ñ qLissepXq b QCohpSq.

Remark 2.2.4.1. To make this definition appear more concrete, let us explain what the right hand side
is without using tensor products of DG categories. Suppose C is a DG category, which we remind has all
colimits. Suppose S “ SpecpAq. Then C b QCohpSq “ C b A-mod “ A-modpCq, i.e., an object of C with an
action of A. So the right hand side is reasonably concrete – the complexity is about the same as that for
A-mod.

2.2.5. What do we get? The above is a formal definition. It remains to justify that we have given a good
notion, where the meaning of this phrase will become more refined as we proceed.

11Here is an example that is not interesting:
š

Oˆ
e
Specpeq. In the case of Gm, LSrestrGm

will differ from this answer in

stackiness and (possibly cohomological) nilpotents (besides replacing Oˆ
e by pOˆ

e q2g , of course).
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2.2.6. Example: the additive group. First, suppose H “ Ga.
We claim that in this case, LSrestrGa

actually “looks the same” as in the de Rham case! More precisely,

we will show that LSrestrGa
is the algebraic stack corresponding to the complex CétpXqr1s, i.e., it is (non-

canonically12) isomorphic to BH0
étpXqˆH1

étpXqˆΩH2
étpXq (where ΩH2

étpXq is defined as the derived scheme
0 ˆH2

étpXq 0). One can see (e.g., via the following analysis) that the same holds in the de Rham setting, but

with de Rham cohomology replacing étale everywhere.
To see this, let triv P ReppGaq be the trivial representation, i.e., the tensor unit. There is a canonical

map triv Ñ trivr1s P ReppGaq corresponding to the standard 2-dimensional representation p 1 ‹
0 1 q of Ga

(considered as a non-trivial self-extension of the trivial representation).
Now for C a symmetric monoidal DG category and F : ReppGaq Ñ C a symmetric monoidal functor,

we can apply F to the extension class above to obtain a map 1C Ñ 1Cr1s, i.e., a point in the (8-)groupoid
HomCp1C,1Cr1sq “ Ω8´1EndCp1Cq.13 It is easy to see14 that this gives an isomorphism of groupoids:

HomComAlgpDGCatcontqpReppGaq,Cq »ÝÑ HomCp1C,1Cr1sq.

Taking C “ qLissepXq b QCohpSq, we see that S-points of LSrestrH equal:

Ω8
`

HomqLissepXqpeX , eX r1sq b HomQCohpSqpOX ,OXq
˘

“ Ω8
`

CétpXqr1s b ΓpS,OSq
˘

for eX the constant sheaf on X. Up to unwinding the formalism, this proves the claim.
2.2.7. Example: the multiplicative group. Here we simply state the outcome:
The space LSrestrGm

is an ind-algebraic stack. It is a disjoint union of its connected components, each of

which is (again non-canonically15) isomorphic to BGm ˆ H1
étpXq^

0 ˆ ΩH2
étpXq. The connected components

of LSrestrGm
are in bijection with its e-points, which we remind are just the rank 1 lisse sheaves on X.

2.2.8. What is the toolkit? This material can be ignored. For the reader’s convenience, we describe the
general recipes for proving things about LSrestrH .

First, we need to probe the underlying classical stack, ignoring issues about derived algebraic geometry.
For this, we let ΠX be the Tannakian group attached to the Tannakian category qLissepXq♥, so ΠX is a
group scheme over e with a symmetric monoidal equivalence ReppΠXq♥ » qLissepXq♥.

For classical schemes, S-points of LSrestrH are canonically in bijection with maps ΠX ˆ S Ñ H ˆ S of
group schemes over S, considered up to conjugation (where we quotient in the groupoid sense) – see [2]
Proposition 2.5.9 (though the assertion is essentially Tannakian duality plus bookkeeping). This allows us
to study the underlying classical prestack of LSrestrH using tools from the theory of algebraic groups.

We then extend to derived schemes using deformation theory, which is simple to compute for LSrestrH ;
see [2] §2.2.

Example 2.2.8.1. Let us illustrate the first technique in an example.
The earlier assertion that LSrestrGm

is a disjoint union of “fat points” from §2.2.7 amounts to saying that

for any algebraically closed field extension e1{e, a map S “ Specpe1q Ñ LSrestrGm
factors through an e-point.

This becomes a general assertion about group schemes: a map ΠX ˆS Ñ Gm ˆS comes from a map defined
over e. As Gm has finite type, this reduces to the same assertion with ΠX replaced by an affine algebraic
group Γ (i.e., a finite type quotient of ΠX), which we can even assume is abelian. Here the assertion is
evident from the representation theory of commutative algebraic groups.

12We have in effect chosen a formality isomorphism for CétpXqr1s.
13To clarify for the reader who is not versed in this material: for a spectrum V (or complex of k-vector spaces), Ω8V means

“take the underlying 8-groupoid” – at least for connective spectra/chain complexes, this is analogous to taking the underlying
set of an abelian group, and in general, one can think of it as “pass to the connective cover and then take the underlying
homotopy set.” In explicit set-theoretic models, we might take a chain complex V ‚ of Z-modules, truncate to obtain τď0pV ‚q,
and then pass to the corresponding simplicial abelian group (hence simplicial set) under Dold-Kan.

The notation Ω8´1pV q simply means Ω8pV r1sq.
14Namely, one simply uses that there is a standard symmetric monoidal equivalence between ReppGaq and modules over the

commutative algebra e ˆ er´1s.
15Here is a recipe to construct the component more canonically. First, take LSrestrGa

and formally complete it at the trivial

Ga-local system. The resulting stack receives a homomorphism from BG^
a “ BG^

m (here we use the exponential); then pushout
along the map to BGm.
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2.2.9. Structure of LSrestr in general. We hope the following results will contain no surprises at this
point.

First, LSrestrH is always a formal algebraic stack. More precisely, if one maps LSrestrH “ LSrestrH pXq Ñ
BH “ LSrestrH pSpecpkqq by taking the fiber at a k-point in X, this map is representable in indschemes, and
even better, in indschemes that are disjoint unions of formal schemes – see [2] Theorem 1.4.5.

Second, the connected components of LSrestrH are in bijection with semi-simple H-local systems up to
equivalence. Informally, two points of LSrestrH lie in the same connected component if and only if their
semi-simplifications are infinitesimally close. See [2] Proposition 3.7.2 for a precise statement.

Finally, if we imagine LSétH existed, then for each semi-simple σ, there would be a closed substack LSétH,σ of

local systems with semi-simplification σ; LSrestrH is then morally the disjoint union of LSétH formally completed

at each such LSétH,σ. For more precise assertions in the Betti and de Rham settings, see [2] §4.

2.3. Restricted geometric Langlands. We briefly discuss our main conjecture in the subject.
2.3.1. Let ShvNilppBunGq Ď ShvpBunGq denote the subcategory of sheaves with singular support in the

nilpotent cone. Here singular support of étale sheaves was defined by Beilinson in [5].
In the Betti setting, Ben-Zvi and Nadler [7] said that sheaves with nilpotent singular support are the

right object to study (one finds a precise theorem justifying this idea in [2] Theorem 18.1.6). We mimic this
principle in the étale setting, conjecturing:

Conjecture 2.3.1 (Restricted geometric Langlands conjecture). There is an equivalence ShvNilppBunGq »
IndCohNilpspecpLSrestrǦ q.

Here the right hand side is defined as in the de Rham case.

Remark 2.3.1.1. One can find a simplified version of this conjecture in [23] Conjecture 6.3.2.

Remark 2.3.1.2. Of course, Conjecture 2.3.1 is subject to many compatibilities. The compatibility
with Whittaker coefficients, (a mild form of) the compatibility with Eisenstein series,16 and a version of [10]
Theorem 8.3.0.1 uniquely determine the comparison functor in Conjecture 2.3.1; in the de Rham and Betti
settings, this idea is the subject of [16].

2.3.2. Evidence. When the geometric field k has characteristic 0, we show in [2] that the restricted GLC
follows from the de Rham geometric Langlands conjecture.

In general, one can directly verify the conjecture for G “ Gm, and using similar ideas as in [21], one
can reduce the conjecture to derived Satake for X “ P1.

2.4. Frobenius. We now discuss what happens when we include Frobenius.
2.4.1. Now suppose the ground field k is Fq. Suppose X is defined over Fq; as G is a priori defined over

Z, it follows that BunG is naturally defined over Fq as well. Recall that rational structure can be encoded
in the geometric Frobenius endomorphism of X (resp. BunG).

Therefore, there are Frobenius automorphisms (namely: pullback along geometric Frobenius) acting on
ShvpXq, qLissepXq, and ShvpBunGq.

By definition of LSrestrH , the Frobenius automorphism of qLissepXq induces a “Frobenius” automorphism
of LSrestrH .

Example 2.4.1.1. Suppose H “ Ga. By §2.2.6, LSrestrGa
is a geometric avatar of the chain complex

CétpXqr1s; this complex carries its own standard Frobenius automorphism, and the two tautologically match
under this dictionary.

In general, the Frobenius on LSrestrH might therefore be thought of as a non-linear analogue of the
Frobenius on CétpXq.

16See [13] for formulations of both Whittaker and Eisenstein compatibilities.
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2.4.2. We define LSarthmH as the Frobenius fixed points of LSrestrH .
More precisely, we have a Cartesian diagram:

LSarthmH LSrestrH

LSrestrH LSrestrH ˆLSrestrH
∆

of formal derived stacks where the arrow on the right is the graph of the Frobenius map.
Note that e-points of LSarthmGLn

are rank n lisse Weil sheaves on X. More generally, we think of LSarthmǦ

as the stack parametrizing continuous homomorphisms from the Weil group WX to the algebraic group Ǧ{e,
considering these homomorphisms up to conjugacy. Said more neatly: LSarthmǦ is the stack of unramified
Langlands parameters for the global field FqpXq.

Remark 2.4.2.1. Let qLisseφpXq denote the DG category of quasi-lisse Weil sheaves, which by definition

are the fixed points of the Z-action on qLissepXq coming from Frobenius. Tautologically, LSarthmH parametrizes

symmetric monoidal functors ReppHq Ñ qLisseφpXq in the same way that LSrestrH parametrizes symmetric

monoidal functors ReppHq Ñ qLissepXq (i.e., S-points of LSarthmH are right t-exact symmetric monoidal
functors ReppHq Ñ qLissepXq b QCohpSq).

However, qLisseφpXq has different categorical properties than qLissepXq. For example, qLisseφpXq♥ is

not a Tannakian category. This leads to some formal differences between the two settings, with LSarthmH

behaving more like the moduli of Betti local systems in some regards; e.g., it turns out ([2] Theorem 16.1.4)

that LSarthmH is a (non-formal!) algebraic stack that is quasi-compact (and in particular: has finitely many
connected components!).

Remark 2.4.2.2. We do not try to provide more explicit pictures in this section, beyond commenting
that the geometry of LSarthmǦ is more complicated than its restricted counterpart. But in Theorem 4.3.3.1,

we give coordinates on a patch of LSarthmǦ containing the trivial representation, providing some bit of explicit
analysis of its geometry.

2.4.3. Essentially by Remark 2.3.1.2, any restricted geometric Langlands equivalence must be compat-
ible with Frobenius automorphisms on both sides.

Recall the notion of categorical trace alluded to in §2.1.6: it takes (dualizable) DG categories with
endofunctors and produces vector spaces.

We can then take the trace of Frobenius on both sides of the restricted geometric Langlands equivalence.
As outlined in [2] §16, the trace of the Frobenius on IndCohNilpspecpLSrestrǦ q is the same as on IndCohpLSrestrǦ q,
which is:

ΓpLSarthmǦ ,ωq

for ω the dualizing sheaf on LSarthmǦ .
On the other hand, the main theorem of [4] calculates the trace of Frobenius on ShvNilppBunGq as:

AutunrG,c.

Using (2.2), one can interpret this as a higher categorical version of the sheaves-functions correspondence
(albeit in a special case, not as a general geometric phenomenon).

2.4.4. We end up with the arithmetic conjecture:

AutunrG,c » ΓpLSarthmǦ ,ωq.

As in the introduction, the vector space on the left is that of unramified automorphic functions, i.e.,
compactly supported functions on BunGpFqq. In particular, unramified cusp forms sit in this space.
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2.4.5. There is a canonical map τ : OLSarthm
Ǧ

Ñ ωLSarthm
Ǧ

encoding a “weak Calabi-Yau” structure on

LSarthmǦ – see §4.6.5 for more discussion.

In particular, there is a natural map from functions on LSarthmǦ to the right hand side ΓpLSarthmǦ ,ωq
above. One should think of Arthur’s SL2 as measuring the difference between O and ω on LSarthmǦ .

Example 2.4.5.1. Suppose σ P LSarthmǦ is a smooth, isolated point of this stack. (Such σ are called
an elliptic or discrete Langlands parameter.) Then one can see that τ |σ is an isomorphism. Therefore, our
conjecture predicts that there is a 1-dimensional space of unramified automorphic forms corresponding17 to
σ.

2.5. Xue’s theorem and the Frobenius trace.
2.5.1. Above, we said that:

(2.5) trpFrob˚
BunG

, ShvNilppBunGqq » Autunrc

was the main theorem of [4]. We briefly indicate how this is proved. They key role is played by Xue’s
theorem from [31].

One can also turn to the introduction of [4] for an overview of the argument. Our summary is not so
different here, except we try a little harder to sweep Beilinson’s spectral projector under the rug (maybe to
the detriment of the discussion).

2.5.2. Step 1. One lesson from Drinfeld’s work18 on the Langlands correspondence is that it is generally
helpful to consider automorphic functions Autunrc as special cases of sheaves of shtuka cohomologies.

We briefly review the story. The shtuka construction takes a finite set I, a representation V P ReppǦIq,
and yields a sheaf ShtI,V P ShvpXIq. Namely, attached to the data of I and V , one has a Hecke functor :

HV : ShvpBunGq Ñ ShvpBunG ˆXIq.

This functor comes from a naturally defined kernel KV P ShvpBunG ˆBunG ˆXIq. We remark that geo-
metric Satake plays a key role in the construction, and we refer to [22] or [4] for more details on the
construction.

Then ShtI,V is obtained by ˚-pulling back KV along the graph of Frobenius:

BunG ˆXI GraphFrob ˆ idXI
ÝÝÝÝÝÝÝÝÝÝÝÑ BunG ˆBunG ˆXI

and then taking compactly supported cohomology along the BunG factor, i.e., !-pushing forward to XI .
For example, when I “ H (and V is the 1-dimensional representation of the trivial group), KV “

∆!peBunG
q, so by base-change, the above computes Cét,cpBunGpFqqq “ AutunrG .

There are natural morphisms between shtuka cohomology sheaves. First, for I fixed, the above con-
struction yields a functor ShtI : ReppǦIq Ñ ShvpXIq. But we can also vary I; more precisely, the
symmetric monoidal structure on ReppǦq maps the assignment I ÞÑ ReppǦIq “ ReppǦqbI into a functor
fSet Ñ DGCatcont (for fSet the category of finite sets); ˚-pullback along diagonal morphisms makes the
assignment I ÞÑ ShvpXIq into a functor fSet Ñ DGCatcont as well. Then standard functoriality properties of
geometric Satake say we have a natural transformation:

Sht : pI ÞÑ ReppǦIqq Ñ pI ÞÑ ShvpXIqq

of functors:

fSet Ñ DGCatcont.

This functoriality is a key property of shtuka cohomologies, and its existence encodes key symmetries of
automorphic functions: V. Lafforgue used exactly this functoriality in [22] to construct excursion operators.

17We are being sloppy about what “corresponding to” means here. To be more precise, our conjecture combined with the
discussion of [2] §24.2 implies that there should be a 1-dimensional space of unramified eigenforms for the action of V. Lafforgue’s
excursion algebra with the eigenvalue being that defined by σ. As is well-known, for general G, Hecke operators alone are not
enough to pick out a 1-dimensional eigenspace.

18The perspective discussed here for general reductive groups is from [29].
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2.5.3. Step 2. We now similarly generalize the other side of our theorem, which we remind is trShvNilppBunGqpFrobq.
The answer should input V P ReppǦIq and yield a sheaf on XI , which we will ultimately denote by ShttrI,V .
Of course, the construction should involve Hecke functors and ShvNilppBunGq, so we presently digress to
discuss the latter subject for a moment.

Following [27] in the topological setting, we show in [2] Theorem 14.2.4 (and its subsequent discussion)
that for V P ReppǦIq, the Hecke functor HV maps ShvNilppBunGq Ď ShvpBunGq into ShvNilppBunGq b
qLissepXIq Ď ShvpBunG ˆXIq.

Moreover, we prove a converse as well: in loc. cit. Theorem 14.4.3, we show that for F P ShvpBunGq
with HV pFq P ShvpBunGq b qLissepXq for all V P ReppǦq, one necessarily has F P ShvNilppBunGq.19

So we summarize with the motto: ShvNilppBunGq can be regarded as the subcategory of sheaves F whose
Hecke transforms HV,xpFq are locally constant as we vary the point x P X.

This perspective on ShvNilppBunGq is actually the better one for almost20 every result in the AGKRRV
series. (From one point of view, this is why it is important to introduce Hecke functors and general shtuka
sheaves into our present analysis: ShvNilppBunGq itself is best understood using the Hecke action.)

2.5.4. Step 3. By the above, for V P ReppǦq, we have a Hecke functor:

HV : ShvNilppBunGq Ñ ShvNilppBunGq b qLissepXIq.

We can precompose this functor with the Frobenius on BunG to obtain:

HV ˝ FrobBunG
: ShvNilppBunGq Ñ ShvNilppBunGq b qLissepXIq.

We can then take the trace along21 ShvNilppBunGq to obtain an object of qLissepXIq. This is the desired

object ShttrI,V .
Our goal in what follows is to show that we have functorial identifications:

(2.6) ShttrI,V » ShtI,V r2|I|s

where the cohomological shift occurs for technical reasons that will appear below. The case I “ H, V
1-dimensional now recovers (2.5) in concise notation.

2.5.5. Step 4. Observe a difference between ShttrI,V and ShtI,V : for essentially geometric reasons, ShttrI
takes values in qLissepXIq Ď ShvpXIq, but this is not apparent for ShtI itself.

In [3], we introduce methods for calculating traces on ShvNilppBunGq. We refer to loc. cit. for details,
but the summary answer is that traces can be computed using general geometric ingredients (upper-* and
lower-! functors) plus a specific ingredient from (geometric) representation theory. The latter is Beilinson’s
spectral projector, whose job (for our purposes) is to take compatible (over I) systems of functors SI :
ReppǦIq Ñ ShvpXIq and produce a compatible systems λSI : ReppǦIq Ñ qLissepXIq.

At an imprecise, top level view, the recipe from [3] produces the following answer: the system of functors
ShttrI is the best approximation to the system of functors ShtI that takes values in qLissepXIq rather than
ShvpXIq, i.e., it is λ ShtI .

Then Xue’s theorem [31] says that ShtI itself takes values in qLissepXIq, so λ ShtI coincides with ShtI
itself, so we obtain (2.6).

2.5.6. Step 5. The above is morally correct, but we now fix one lie. The discussion that follows can be
compared with [4] Remark 3.2.6.

The functors ShtI are compatible under upper-* functors as we vary the finite set I. However, the
procedure of applying the spectral projector applies for a system of functors SI compatible under upper-
! functors. So we need a variant Sht! of the shtuka functors that are suitably compatible under upper-!
functors.

19Technically, there are minor restrictions on the characteristic of the ground field in this assertion. Recall from §1.4 that
we always neglect these small characteristics, and we implicitly assume we are away from these characteristics in our discussion
here.

20The main exception is the Künneth formula from [2].
21This is analogous to saying that if we have a linear transformation W1 Ñ W1 b W2 with W1 finite-dimensional, we have

a corresponding vector in W_
1 b W1 b W2, and we can pair along the first two factors to obtain a “trace along W1” that is a

vector in W2.
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The relevant functors Sht!I,´ : ReppǦIq Ñ ShvpXIq are characterized by the formula:

(2.7) CcpXI , Sht!I,V
!

bFq “ CcpBunG ˆXI , pFrobˆ idq˚pKV

˚
b p˚

3 pFqq

for p3 : BunG ˆBunG ˆXI Ñ XI the projection.22

A priori, the result from [3] actually implies is that tShttrI uIPfSet is the best approximation to the functors

tSht!IuIPfSet taking values in the subcategories qLisse Ď Shv.

The logic then proceeds by applying Xue’s theorem twice. First, this theorem tells us that Sht!I,V “

ShtI,V r2|I|s (where 2|I| appears as 2 dimpXIq) – namely, we simply substitute ShtI,V r2|I|s in place of Sht!I,V

in the left hand side of (2.7), and then we apply the identity G
!

b F “ G
˚
b Fr´2 dims for G being lisse to

(functorially) manipulate the resulting expression into the right hand side of (2.7). In particular, Xue’s

theorem then implies Sht!I,V takes values in qLisse, so the previous paragraph implies ShttrI “ Sht!I , which
we just saw also equals ShtI r2|I|s, as desired.

3. Spectral Eisenstein series

We now begin working toward Theorem A. For the remainder of the paper, we assume k “ Fq.
Our goal in this section is to define and study a certain map:

Eisspec : ΓpLSarthmŤ ,ωLSarthm
Ť

q Ñ ΓpLSarthmǦ ,ωLSarthm
Ǧ

q.

Throughout this section, we only consider (pre)stacks locally almost of finite type; we omit further
mention of this hypothesis.

3.1. Automorphic Eisenstein series. We begin by reviewing some constructions regarding geometric
Eisenstein series and their function-theoretic counterpart, the pseudo-Eisenstein series. We will later wish
to find counterparts of these constructions on the spectral side.

3.1.1. First, we have a canonical functor:

Eis! : ShvpBunT q Ñ ShvpBunGq

defined by ˚-pullback along BunB Ñ BunT followed by !-pushforward along BunB Ñ BunG.
By the Hecke property for Eis! established in [6], and [2] Theorem 14.4.3 (the “converse to the Nadler-Yun

theorem,” cf. §2.5.3) , we find:

Proposition 3.1.1.1. The functor Eis! maps qLissepBunT qp“ ShvNilpT
pBunT qq to ShvNilppBunGq.

3.1.2. Pseudo-Eisenstein series. Let ps-Eis : AutunrT,c Ñ AutunrG,c be the pseudo-Eisenstein map. By
definition, this is the composition:

AutunrT,c :“ FuncpBunT pFqqq Ñ FuncpBunBpFqqq Ñ FuncpBunGpFqqq “: AutunrG,c

given by first restricting (noting that the fibers of the map BunBpFqq Ñ BunT pFqq are finite) and then
summing along the fibers of the map BunBpFqq Ñ BunGpFqq (which is well-defined because we consider this
on functions with finite support).

3.1.3. Compatibility of the two. The functor Eis! obviously intertwines Frobenii and preserves compact
objects, so we may pass to traces of Frobenius to obtain a map:

trpEis!q : trqLissepBunT qpFrobq Ñ trShvNilppBunGqpFrobq.

By the main theorem of [4], we have isomorphisms:

(3.1)
trqLissepBunT qpFrobq » AutunrT,c

trShvNilppBunGqpFrobq » AutunrG,c

22A notational remark: our notation is inconsistent with [4]. The collection of functors we now call Sht!I are neatly packaged
in the single functor called Sht in [4], although the functors we call ShtI here are denoted in the same way in [4]. They differ
only by shifts by Xue’s theorem.
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so trpEis!q corresponds to a map:

AutunrT,c Ñ AutunrG,c.

By23 [4] Theorem 5.2.3, the isomorphisms (3.1) are given by a version of the sheaves-functions corre-
spondence; it follows formally that we have a commutative diagram:

(3.2)

trqLissepBunT qpFrobq trShvNilppBunGqpFrobq

AutunrT,c AutunrG,c.

trpEis!q

» »

ps-Eis

In other words: the trace of geometric Eisenstein series is the pseudo-Eisenstein series.

3.2. Some general constructions. Until further notice, we work exclusively over the field e.
Below, we give general a construction of Eisspec in a general stack-theoretic context.
3.2.1. Terminology around stacks. Recall the technical notion of a QCA stack from [8]: this term refers

to an algebraic stack Y that is quasi-compact with affine diagonal. For any such QCA stack Y, [8] Theorem
0.4.5 asserts that IndCohpYq “ IndpCohpYqq. Moreover, by [8] §3, there is a good theory of pushforwards for
ind-coherent sheaves on QCA stacks.

Also, we recall the notion of ind-algebraic stack from [2] §5.2. We remind that a prestack Y is ind-
algebraic if it is convergent and for every n ě 0 its n-truncation ďnY can be written as a filtered colimit of
n-truncated algebraic stacks Yi under closed embeddings. We say Y is ind-QCA if the terms Yi can moreover
be taken to be QCA.

Our main example is LSrestrH for H an affine algebraic group. According to [2] Corollary 5.2.6, LSrestrH is
ind-algebraic; moreover, the proof of this result shows that LSrestrH is in fact ind-QCA.

By the above theorem of Drinfeld-Gaitsgory, any ind-QCA stack Y has IndCohpYq being compactly
generated. Again, there is a good theory of IndCoh-pushforwards for morphisms between ind-QCA stacks.

3.2.2. Below, we fix f : Y Ñ Z a 1-representable24 map between ind-QCA algebraic stacks.
Suppose in addition that we are given automorphisms φY : Y Ñ Y and φZ : Z Ñ Z intertwined by f

(i.e., we are given an identification φZ ˝ f » f ˝ φY). We sometimes omit the subscripts and simply write φ
for either φY or φZ.

We form the fixed point stack Yφ (resp. Zφ) of φ. Explicitly, this is the equalizer EqpY
φ

Ñ
id

Yq, which can

also be written as the Cartesian product of Y
Graphφ

ÝÝÝÝÝÑ Y ˆ Y
∆ÐÝ Y. By assumption, we have an induced map

Yφ Ñ Zφ that we denote by fφ.
Below, under suitable hypotheses, we will construct canonical maps between ΓpYφ,ωYφq and ΓpZφ,ωZφq.
We have structured the discussion as follows. In §3.2.3 and §3.2.4, we have given “elementary” construc-

tions of these maps using standard functoriality properties of IndCoh. The latter construction in particular
is somewhat involved. Afterward, we explain a conceptual framework (functoriality of traces) for these con-
structions that makes their existence obvious. The author thinks about these maps using the latter point of
view, but fears the reader will not trust the magic if concrete descriptions are lacking; the reader who does
not need such convincing can skip past §3.2.3-3.2.4.

We also remark that the ind-QCA assumption is overkill. It is not needed in §3.2.3. It is used mildly in
§3.2.4 for the existence of various pushforward functors, though weaker hypotheses suffice. Fundamentally,
this hypothesis is natural from the more conceptual perspective of traces to ensure compact generation
(hence dualizability) of IndCoh.

23We remark that loc. cit. is conditional (even in its formulation) on a certain technical hypothesis on ShvNilppBunGq; see
[4] §5.1. This hypothesis was recently verified by the author and Gaitsgory and will appear in forthcoming work.

24I.e., the fibers are algebraic stacks. Specifically, for every S P AffSch and S Ñ Z, the fiber product Y ˆZ S is an algebraic
stack. In our context, this condition rules out a map like Y Ñ Specpeq unless Y is an actual (as opposed to ind-)algebraic stack.
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3.2.3. Pushforward. First, suppose that the map f is representable and proper. In this case, we will
construct a map:

(3.3) ΓIndCohpYφ,ωYφq Ñ ΓIndCohpZφ,ωZφq.

In fact, this is quite easy. In this case, the map fφ : Yφ Ñ Zφ is also proper (and representable),25 which
is all we will need below.

Then fφ,IndCoh
˚ is left adjoint to fφ,!, so we obtain a canonical adjunction map fφ,IndCoh

˚ fφ,! Ñ id. This

yields a map fφ,IndCoh
˚ pωYφq Ñ ωZφ ; applying ΓIndCohpZφ,´q gives the desired map (3.3).

Remark 3.2.3.1. The map (3.3) is ΓpZφ,OZφq-linear.

3.2.4. Pullback. Next, suppose that f is eventually coconnective (and 1-representable). In this case, we
will construct a map:

(3.4) ΓIndCohpZφ,ωZφq Ñ ΓIndCohpYφ,ωYφq.

First, note26 that f IndCoh
˚ : IndCohpYq Ñ IndCohpZq admits a left adjoint f˚,IndCoh in this case. We have

base-change between ˚-pushforwards and ˚-pullbacks (with the latter being only considered for eventually
coconnective morphisms).

In this case, we have a natural transformation:

pidˆfq˚,IndCohpidˆφZqIndCoh˚ pidˆfqIndCoh˚ “

pidˆfq˚,IndCohpidˆfqIndCoh˚ pidˆφYqIndCoh˚ Ñ pidˆφYqIndCoh˚ P EndpIndCohpY ˆ Yqq.

coming from adjunction. Applying this map to ∆IndCoh
˚ pωYq, we obtain a canonical map:

(3.5) pidˆfq˚,IndCoh GraphIndCohφZ˝f,˚pωYq Ñ GraphφY,˚pωYq P IndCohpY ˆ Yq.

Here for a map g : S Ñ T , the map Graphg : S Ñ SˆT is the graph morphism, i.e., Graphg :“ pidˆgq˝∆S .

Let ϖY denote the canonical map Yφ Ñ Y sending a pair py P Y, y » φZpyqq to y, and similarly for ϖZ.
Below, we will construct a canonical isomorphism:

(3.6) ∆!
Ypidˆfq˚,IndCoh GraphIndCohφZ˝f,˚pωYq » f˚,IndCohϖIndCoh

Z,˚ pωZφq P IndCohpYq.

Assuming for a moment that this construction has been given, we obtain a canonical map:

f˚,IndCohϖIndCoh
Z,˚ pωZφq Ñ ∆!

Y GraphφY,˚pωYq P IndCohpYq

by applying ∆!
Y to (3.5). By adjunction, this yields a canonical map:

ϖIndCoh
Z,˚ pωZφq Ñ f IndCoh

˚ ∆!
Y GraphφY,˚pωYq » f IndCoh

˚ ϖIndCoh
Y,˚ pωYφq P IndCohpZq.

Here we have used the base-change isomorphism ∆!
Y GraphIndCohφY,˚ » ϖIndCoh

Y,˚ ϖ!
Y. Now applying the global

sections functor ΓIndCohpZ,´q to both sides above, we obtain the desired map (3.4).
It remains to give the isomorphism (3.6). First, the Cartesian diagram:

Y Y ˆ Z

Z Z ˆ Z

GraphφZ˝f

f fˆid

GraphφZ

gives a base-change isomorphism:

GraphIndCohφZ˝f,˚pωYq » pf ˆ idq! GraphIndCohφZ,˚ pωZq.

This now yields:

∆!
Ypidˆfq˚,IndCoh GraphIndCohφZ˝f,˚pωYq » ∆!

Ypidˆfq˚,IndCohpf ˆ idq! GraphIndCohφZ,˚ pωZq.

25Indeed, because f is representable and separated, the morphism Yφ “ YˆYˆYY Ñ YˆZˆZY is a closed embedding. Clearly

the further projection Y ˆZˆZ Y Ñ Z ˆZˆZ Z “ Zφ is proper.
26This, and other similar assertions in this section, formally reduce to the results of [17] Chapter 4 §3.
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We have27 pidˆfq˚,IndCohpf ˆ idq! » pf ˆ idq!pidˆfq˚,IndCoh, so we can rewrite the right hand side above as:

∆!
Ypf ˆ idq!pidˆfq˚,IndCoh GraphIndCohφZ,˚ pωZq “ Graphσ,!f pidˆfq˚,IndCoh GraphIndCohφZ,˚ pωZq.

Here we use Graphσg to denote pg ˆ idq ˝ ∆, i.e., the graph map following by swapping the two Cartesian
factors.

Now base-change for the Cartesian diagrams:

Y Z ˆ Y Zφ Z

Z Z ˆ Z Z Z ˆ Z

Graphσ
f

f id ˆf

ϖZ

ϖZ GraphφZ

∆Z ∆Z

yields identifications:

Graphσ,!f pidˆfq˚,IndCoh GraphIndCohφZ,˚ pωZq » f˚,IndCoh∆!
Z GraphIndCohφZ,˚ pωZq »

f˚,IndCohϖIndCoh
Z,˚ pωZφq

as desired.

Remark 3.2.4.1. The map (3.4) is ΓpZφ,OZφq-linear.

3.2.5. Categorical setting. We now present a more conceptual approach to constructions such as the
above.

Suppose F : C Ñ D P DGCatcont is a map between dualizable DG categories. Suppose that C (resp. D)
is equipped with an endofunctor φC (resp. φD) and that:

‚ F admits a continuous right adjoint FR.
‚ F lax intertwines φ, i.e., we are given a map (often an isomorphism) F ˝ φC Ñ φD ˝ F .

Then standard functoriality of traces yields a canonical map:

trCpφCq Ñ trDpφDq P Vect

associated with this data. Namely, we have:

trCpφCq Ñ trCpφCF
RF q » trDpFφCF

Rq Ñ trDpφDFFRq Ñ trDpφDq.

Here we used the cyclicity of traces and standard adjunction maps.
3.2.6. Pushforward/pullback revisted. Suppose first that we are given f : Y Ñ Z as before representable

and proper. We also suppose Y and Z are ind-QCA (to ensure IndCoh is dualizable).
In the setting of §3.2.5, take C “ IndCohpYq, D “ IndCohpZq, F “ f IndCoh

˚ , φC “ φIndCoh
Y,˚ and φD “ φIndCoh

Z,˚ .

Then the categorical formalism yields a canonical map:28

ΓIndCohpYφ,ωYφq “ trIndCohpYqpφIndCoh
Y,˚ q Ñ trIndCohpZqpφIndCoh

Z,˚ q “ ΓIndCohpZφ,ωZφq.

A straightforward diagram chase shows that this map recovers (3.3). We remark that properness is needed
for f IndCoh

˚ to admit a continuous right adjoint.
Next, take f : Y Ñ Z 1-representable and eventually coconnective. Now take C “ IndCohpZq, D “

IndCohpYq, F “ f IndCoh,˚, φC “ φ!
Z, φD “ φ!

Y. Then the categorical formalism yields a canonical map:29

ΓIndCohpZφ,ωZφq “ trIndCohpZqpφ!
Zq Ñ trIndCohpYqpφ!

Yq “ ΓIndCohpYφ,ωYφq.

A diagram chase shows that this map coincides with (3.4).

Remark 3.2.6.1. The second diagram chase is routine, but unsurprisingly, somewhat more involved
than the first. We omit the verification here. Actually, for our purposes, the reader may take the categorical
constructions as definitions of (3.3) and (3.4), completely ignoring the material of §3.2.3-3.2.4. We only
included the explicit constructions to make the construction appear more concrete.

27This kind of commutation is a general fact: see [12] Proposition 7.1.6. However, it is particularly easy in the present
setting: by the Künneth formula, we can write pf ˆ idq! “ f ! b id and pidˆfq˚,IndCoh as idbf˚,IndCoh.

28Here the equalities are standard isomorphisms; see e.g. [15] §3.5.3.
29Note that trCpF q “ trC_ pF_q, so trpφ!q “ trpφIndCoh

˚ q.
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3.3. Spectral Eisenstein series.
3.3.1. Setup. We have the standard correspondence:

LSrestrB̌

LSrestrŤ LSrestrǦ .

q p

The map p is representable and proper, while the map q is quasi-smooth and 1-representable. Also, each
of these spaces carries a Frobenius self-map, and the maps p and q intertwine these Frobenii. Therefore, by
(3.3) and (3.4), we obtain canonical maps:

ΓpLSarthmŤ ,ωLSarthm
Ť

q Ñ ΓpLSarthmB̌ ,ωLSarthm
B̌

q Ñ ΓpLSarthmǦ ,ωLSarthm
Ǧ

q.

Definition 3.3.1.1. The composition of the above maps is the spectral Eisenstein series Eisspec :
ΓpLSarthmŤ ,ωLSarthm

Ť
q Ñ ΓpLSarthmǦ ,ωLSarthm

Ǧ
q.

3.4. Spectral vs. function theoretic Eisenstein series.
3.4.1. Recall that restricted geometric Langlands (see Conjecture 2.3.1) predicts an equivalence of cat-

egories:

(3.7) ShvNilppBunGq » IndCohNilpspecpLSrestrǦ q.

The equivalence should be subject to various compatibilities. We highlight two of salient interest here:

‚ (Hecke compatibility): The equivalence (3.7) is of QCohpLSrestrǦ q-module categories; here the right
hand side has the evident action and the left hand side carries the action of [2] Theorem 14.3.2.

‚ (Eisenstein compatibility, P “ B case): The diagram:

qLissepBunT q ShvNilppBunGq

QCohpLSrestrŤ q IndCohNilpspecpLSrestrǦ q

Eis!

»

Eisspec

commutes; here the left arrow is the equivalence unconditionally constructed in [2] Example 21.2.9.

3.4.2. We now recall the following result:

Proposition 3.4.2.1. Suppose Y is a quasi-smooth ind-algebraic stack equipped with a self-map φY. Let
N Ď T˚r´1sY be a closed conical substack (of the -1-shifted cotangent bundle of Y) such that for every point
y P Y φ, the map dφr´1s : Ny Ñ Ny is contracting onto 0 P T˚

y r´1sY. Then the map:

trIndCohNpYqpφ!q Ñ trIndCohpYqpφ!q “ ΓpYφ,ωYφq

is an isomorphism.

See [2] §24.6.8.30
In particular, we find that restricted geometric Langlands produces an isomorphism:

(3.8) AutunrG,c » ΓpLSarthmǦ ,ωLSarthm
Ǧ

q.

Assuming the Hecke compatibility for restricted geometric Langlands, this is an equivalence of ExcǦ :“
ΓpLSarthmǦ ,OLSarthm

Ǧ
q-modules, where the left hand side inherits its ExcǦ-module structure from [4]. We

remind (see [2] §24.2) that the ExcǦ-module structure on Autunrc refines the Lafforgue-Xue action of excursion
operators on this space (see §1.2.3).

30In loc. cit., this is formulated as a conjecture. But it is actually straightforward to prove from the formalism of [1].
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3.4.3. We now obtain:

Proposition 3.4.3.1. Assume restricted geometric Langlands holds for G with its Eisenstein compati-
bility. Then the following diagram commutes:

AutunrT,c AutunrG,c

ΓpLSarthmŤ ,ωLSarthm
Ť

q ΓpLSarthmǦ ,ωLSarthm
Ǧ

q

»

ps-Eis

»

Eisspec

where the vertical isomorphisms come from (3.8).

Indeed, this follows from the realizations of ps-Eis and Eisspec via traces, see (3.2) and §3.2.6.

3.5. Formulation of the main result.
3.5.1. We will be concerned with localized versions of the map Eisspec. We briefly discuss the relevant

formalism.
Suppose we are given a commutative diagram:

LSarthmB̌

LSarthmǦ LSarthmŤ

A1
f g

Let Å1 :“ A1z0. Note that:

ΓpLSarthmǦ ,ωqrf´1s :“ colim
f ¨´

ΓpLSarthmǦ ,ωLSarthm
Ǧ

q » ΓpLSarthmǦ ˆ
A1

Å1,ωq

and similarly for pŤ, gq or pB̌, f |LS
B̌arthm

“ g|LS
B̌arthm

q in place of pǦ, fq.
Now observe that we have a correspondence:

(3.9)

LSarthmB̌ ˆ
A1

Å1

LSarthmǦ ˆ
A1

Å1 LSarthmŤ ˆ
A1

Å1

with left arrow proper and representable and right arrow eventually coconnective and 1-representable. As
in the definition of spectral Eisenstein series, we obtain a canonical map:

(3.10) ΓpLSarthmŤ ,ωLSarthm
Ť

qrg´1s Ñ ΓpLSarthmǦ ,ωLSarthm
Ǧ

qrf´1s.

We clearly have:

Lemma 3.5.1.1. (1) The map Eisspec : ΓpLSarthmŤ ,ωLSarthm
Ť

q Ñ ΓpLSarthmǦ ,ωLSarthm
Ǧ

q intertwines the

operators of multiplication by f and g, i.e., the map is naturally a morphism of erts-modules.
(2) The map (3.10) is obtained by inverting the action of t, i.e., tensoring over erts with ert, t´1s.
(3) The diagram:

ΓpLSarthmŤ ,ωLSarthm
Ť

q ΓpLSarthmǦ ,ωLSarthm
Ǧ

q

ΓpLSarthmŤ ,ωLSarthm
Ť

qrg´1s ΓpLSarthmǦ ,ωLSarthm
Ǧ

qrf´1s

Eisspec

(3.10)
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commutes.

Accordingly, when the meaning is unambiguous, we will abuse notation in also denoting the map (3.10)
by Eisspec.

3.5.2. We are now in a position to state our main result about Eisspec.

Theorem 3.5.2.1. There exist functions δǦ P Ω8ΓpLSarthmǦ ,Oq and δŤ P Ω8ΓpLSarthmŤ ,Oq fitting into a
commutative diagram:

(3.11)

LSarthmB̌

LSarthmǦ LSarthmŤ

A1
δǦ δŤ

such that:

(1) The map δǦ takes a non-zero value at the trivial Weil local system.
(2) The object:

ΓpLSarthmǦ ,ωLSarthm
Ǧ

qrδ´1
Ǧ

s P Vect

lies in cohomological degree 0,31 and similarly with Ť replacing Ǧ.
(3) The map:

(3.12) Eisspec : ΓpLSarthmŤ ,ωLSarthm
Ť

qrδ´1
Ť

s Ñ ΓpLSarthmǦ ,ωLSarthm
Ǧ

qrδ´1
Ǧ

s P Vect♥

is surjective.

This result will be proved in §4.

3.6. Proof of Theorem A. We now deduce the main theorem of this paper from Theorem 3.5.2.1 and
our earlier observations. We remind that we have assumed G is semi-simple32 here.

3.6.1. First, let us recall the explicit meaning of Langlands parameters, following [22] and [30].

Let σ be an e-point of LSarthmǦ , i.e., a Weil Ǧ-local system on X. We obtain a map:

evσ : ExcǦ Ñ e

sending a function f P Exc “ ΓpLSarthmǦ ,Oq to its value at σ. We abuse notation in also letting evσ denote

the induced map (obtained by passing to H0) H0pExcq Ñ e of classical commutative algebras. We let
mσ Ď H0pExcq denote the corresponding maximal ideal.

Now recall (from [4], building on [22] and [30]) that Exc – hence H0pExcq – acts on AutunrG,c.
We then define:

AutunrG,c,rσs Ď AutunrG,c

to be the mσ-torsion in the right hand side, i.e., ψ P AutunrG,c,rσs if m
n
σ ¨ ψ “ 0 for n " 0.

We let AutunrG,cusp,rσs :“ AutunrG,c,rσs X AutunrG,cusp.

Warning 3.6.1.1. Because AutunrG,cusp is33 finite-dimensional, AutunrG,cusp decomposes as a direct sum:

(3.13) AutunrG,cusp » ‘
σ{„

AutunrG,cusp,rσs.

31Note that (3.8) predicts that ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q lies in cohomological degree 0. Although we ultimately will be assuming

restricted geometric Langlands, we are striving here to formulate a theorem independent of it, so we have included this statement.
32This assumption somewhat simplifies the discussion. Suitably formulated, the results here apply as well for general reductive

groups.
33We remind that (using that G is semi-simple) there is a quasi-compact open U Ď BunG defined over Fq such that any

ψ P AutunrG,cusp vanishes outside UpFqq (see [9] Proposition 1.4.6 in the sheaf-theoretic setting); as UpFqq is finite, we clearly

obtain the assertion.
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(Here the implied equivalence relation „ relates σ1 and σ2 when mσ1 “ mσ2 ; according to [22] Proposition
0.38, this occurs exactly when σ1 and σ2 have equivalent semi-simplifications.)

However, we do not have a similar decomposition (3.13) for compactly supported automorphic functions;
there are such functions that do not lie in any AutunrG,c,rσs.

3.6.2. Recall34 that ps-EispAutunrT,cq X AutunrG,cusp “ 0.
Therefore, it suffices to show that any ψ P AutunrG,c,rtrivs Ď AutunrG,c lies in the image of the map ps-Eis :

AutunrT,c Ñ AutunrG,c. This will be our objective.

3.6.3. Recall that we have δǦ P ExcǦ :“ ΓpLSarthmǦ ,Oq. As Autunr
Ǧ,c

is acted on by ExcǦ, we may invert

the action of δǦ:

Autunr
Ǧ,c

rδ´1
Ǧ

s :“ colim
δǦ¨´

Autunr
Ǧ,c

.

We now translate from spectral Eisenstein series using restricted geometric Langlands (and Proposition
3.4.3.1). By Lemma 3.5.1.1 (1), the map ps-Eis intertwines the actions of δŤ and δǦ on AutunrT,c and AutunrG,c

respectively. Moreover, the induced map:

ps-Eis : Autunr
Ť,c

rδ´1
Ť

s Ñ Autunr
Ǧ,c

rδ´1
Ǧ

s

is surjective by Theorem 3.5.2.1.
This means that for our given35 automorphic funciton ψ, there is an integer n ě 0 so that δn

Ǧ
¨ ψ “

ps-Eispψ0q for some ψ0 P AutunrT,c .

Let λ P e be the value of δǦ at the trivial local system triv P LSarthmǦ . Note that pδǦ ´ λq P mtriv Ď
H0pExcq, so for m " 0, we have:

pδǦ ´ λqm ¨ ψ “ 0.

By assumption, λ ‰ 0. Therefore, we can find a polynomial qptq P erts with:

qptq ¨ tn “ 1 mod pt ´ λqm.

Then we clearly obtain:

ps-EispqpδŤ q ¨ ψ0q “ qpδǦq ¨ ps-Eispψ0q “ qpδǦq ¨ δn
Ǧ

¨ ψ “ ψ.

This concludes the argument.

3.7. A toy model for Theorem 3.5.2.1. We now give a simpler setting in which a form of Theorem
3.5.2.1 holds. We will ultimately reduce the proof of Theorem 3.5.2.1 to this special case. The special case
we consider is a standard result about the Grothendieck-Springer resolution.

3.7.1. Analogies. By way of analogy, we replace the diagram:

LSrestrB̌

LSrestrŤ LSrestrǦ

q p

with the diagram:

(3.14)

BB̌

BŤ BǦ.

34See [26] II.2.4 for a much stronger assertion.
35To be clear: this is true for any compactly supported automorphic function, but may be essentially vacuous if the form

has another Langlands parameter.
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In place of Frobenius, we consider each term in (3.14) with its identity endomorphism. Passing to fixed
points under this map, we obtain the diagram:

B̌
ad
{ B̌

Ť
ad
{ Ť Ǧ

ad
{ Ǧ

Here for an algebraic group H, H
ad
{ H denotes the (stack) quotient of H acting on itself by conjugation;

we remind36 that H
ad
{ H » pBHqS

1

“ pBHqid“id. We remark that the natural map O
H

ad

{ H
Ñ ω

H
ad

{ H
is an

isomorphism.
Therefore, the formalism of §3.2 yields a canonical map:

(3.15) Eisspec,toy : ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
q Ñ ΓpǦ

ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
q.

Lemma 3.7.1.1. The left and right hand sides of (3.15) are concentrated in cohomological degree 0 and
the map Eisspec,toy is surjective.

Proof. The most straightforward proof is as follows. We identify ReppŤ q with ‘λ̌PΛ̌Vect and ReppǦq
with ‘λ̌PΛ̌`Vect; here ‘ denotes the coproduct on DGCatcont and we have implicitly chosen representa-
tives of isomorphism classes of irreducible representations. Under this identification, we obtain canonical
isomorphisms:

(3.16)

‘λ̌PΛ̌k » trReppŤ qpidqp» ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
qq

‘λ̌PΛ̌`k » trReppǦqpidqp» ΓpǦ
ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
qq.

These identities clearly imply that both sides of (3.15) are concentrated in degree 0. We let eŤ,λ̌ (λ̌ P Λ̌)

and eǦ,λ̌ (λ̌ P Λ̌`) denote the basis vectors for these vector spaces coming from the displayed isomorphism.

By Borel-Weil-Bott, for λ̌ dominant, the map ReppŤ q Ñ ReppǦq sends ℓw0pλ̌q P ReppŤ q♥ (the 1-dimensional
representation corresponding to w0pλ̌q to V λq P ReppǦq (the representation with highest weight λ), so sends
eŤ,w0pλ̌q to eǦ,λ; this yields the surjectivity.

□

Remark 3.7.1.2. We remark (although we do not need it) that in (3.16), the isomorphism ‘λ̌PΛ̌`k »

ΓpǦ
ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
q sends eǦ,λ̌ (notation as before) to the trace function corresponding to the representation

V λ̌ of Ǧ, and similarly for Ť . Therefore, the composition:

‘
λ̌PΛ̌

k » ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
q Eisspec,toy

ÝÝÝÝÝÝÑ ΓpǦ
ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
q » FunpŤ qW “

`

‘
λ̌PΛ̌

k
˘W

is explicitly calculated using the Weyl character formula (and Borel-Weil-Bott).

36There is some sign ambiguity in the isomorphism here. Usually this does not matter, as for the present discussion. But it
will matter later in the paper. We clarify the implied sign conventions in §4.4.2.
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3.7.2. We conclude by recording a variant.
Note that we have a commutative diagram:

B̌
ad
{ B̌

Ť
ad
{ Ť Ǧ

ad
{ Ǧ

Ť {{W

where Ť {{W “ SpecperΛ̌sW q is the GIT quotient, the lower left map is tautological and the lower right map
is the standard characteristic polynomial map (uniquely characterized by this diagram).

Therefore, Eisspec,toy is a map of FunpŤ {{W q-modules. Lemma 3.7.1.1 then says that Eisspec,toy is an
epimorphism of FunpŤ {{W q-modules, so we obtain:

Corollary 3.7.2.1. For any g P ΓpŤ {{W,OŤ {{W q, the map:

Eisspec,toy : ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
qrg´1s Ñ ΓpǦ

ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
qrg´1s.

is a surjection.

4. Grothendieck-Springer theory for LSarthm

The goal of this section is to prove Theorem 3.5.2.1. As this theorem occurs purely on the spectral side,
throughout this section, we work by default over the field e.

4.1. Base-points and Weil group notation. Below, we take x0 P Xpkq a marked geometric point,
which will serve as the base-point of our fundamental group; here we remind that k “ Fq.

We encourage the reader to be kind to themselves and assume that x0 is defined over Fq; in this case
essentially all of the remaining material of §4.1 can be ignored.

With that said, we include some technical material here to allow for the case where X0 has no rational
points.

4.1.1. Let rX denote the universal cover of X based at x0; by definition, rX is connected, pro-finite étale

over X, equipped with a lift rx0 of x0, and initial among all such data. Note that rX is also the universal cover

of X0, so there is a tautological action of πét
1 pX0q ( “ πét

1 pX0, x0q) on rX (realizing it as a πét
1 pXq-torsor over

X and a πét
1 pX0q-torsor over X0, each torsor being understood as locally trivial for the pro-étale topology).

Let FrobX : X Ñ X be the geometric Frobenius map. Choose once and for all a lift of the point

FrobXpx0q to rX. It is easy to see that there is a unique map ĆFrobX fitting into the commutative diagram

rX rX

X X

ĆFrobX

π π

FrobX

and sending rx0 to our chosen lift of FrobXpx0q (which will now be denoted ĆFrobXprx0q).
This choice also (relatedly) defines an action of pZ on rX in Sch{X0

; the inverse37 to generator ´1 P pZ

acts by a map γ : rX Ñ rX characterized by being Frobenius semi-linear over k and so that γ ˝ ĆFrobX is the

absolute Frobenius of rX.
This data defines a splitting of the map WX Ñ Z. We let F P WX denote the image of 1 P Z under the

splitting. By definition, F´1 P WX Ď πét
1 pX0q acts on rX by the map denoted γ above.

37We note that per our conventions, the inverse to the generator ´1 P pZ corresponds to the arithmetic Frobenius when we

identify pZ » GalpFqq.
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For g P πét
1 pXq, we let Fg :“ AdF pgq. Note that the choice of point ĆFrobXprx0q gives an isomorphism

πét
1 pX,FrobXpx0qq » πét

1 pX,x0q, and the composition:

πét
1 pX,x0q

πét
1 pFrobXq

ÝÝÝÝÝÝÝÑ πét
1 pX,FrobXpx0qq » πét

1 pX,x0q

is the map g ÞÑ Fg,38 i.e., we have:

(4.1) πét
1 pFrobXqpgq “ Fg.

4.1.2. The choice of point ĆFrobXprx0q also defines an isomorphism:

x˚
0 » FrobXpx0q˚ : LissepXq♥ Ñ Vect♥

of e-linear symmetric monoidal functors. In fact, we claim that this comes from an isomorphism of symmetric
monoidal DG functors:

(4.2) x˚
0 » FrobXpx0q˚ : qLissepXq Ñ Vect.

Indeed, this follows formally whenever qLissepXq is the derived category of its heart. This is the case for
X ‰ P1 by [2] Theorem E.2.8. Slightly more elementarily (and allowing genus 0), we choose U Ď X
affine open and containing x0 and FrobXpx0q, and then qLissepUq is the derived category of its heart by the
(simpler) Theorem E.2.8 (a).

Remark 4.1.2.1. The following remark will not be used. For the present moment, let k be any alge-
braically closed field (not just Fq). Let Y {k be a connected scheme of finite type. Let y1, y2 P Y pkq be two
points. Then at this moment, it is natural to ask if there exists an isomorphism of symmetric monoidal DG
functors:

y˚
1 » y˚

2 : qLissepY q Ñ Vect.

We claim this is so. Indeed, we have effectively treated above the case of a smooth connected curve. The case
of any connected curve follows in an evident way by considering normalizations (using intersection points
between irreducible components of the singular curve as signposts leading the way). Finally, the general case
follows by noting that there exists a connected curve C and a map C Ñ Y with y1 and y2 in its image by
an elementary argument. (One wonders if there is a purely Tannakian argument that would apply in this
derived setup.)

4.2. The adjoint quotient. Let H be an affine algebraic group in what follows.
4.2.1. Let LSrestr,˝H denote the neutral connected component of LSrestrH , i.e., the connected component

containing the trivial H-local system on X. We remind from [2] Proposition 3.7.2 that LSrestrH parametrizes
(in a precise sense) H-local systems on X with trivial semi-simplification; in what follows, we refer to these
as unipotent H-local systems.

We then set:

LSarthm,˝
H :“ LSarthmH ˆ

LSrestr
H

LSrestr,˝H .

In other words, LSarthm,˝
H is the fixed points of Frobenius acting on LSrestr,˝H ; it may be thought of as

parametrizing Weil H-local systems that are geometrically unipotent.

38Indeed, we have ĆFrobXpgrx0q “ πét
1 pFrobXqpgq ¨ ĆFrobXprx0q by definition of πét

1 pFrobXqpgq.

Now by definition of F “ γ´1, we have F´1 ¨ ĆFrobXpgrx0q “ Φ
ĂX

pgrxq for Φ
ĂX

the absolute Frobenius. By functoriality, absolute

Frobenius is a map of spaces with πét
1 pXq-actions, so Φ

ĂX
pgrx0q “ g ¨ Φ

ĂX
prx0q.

Comparing to our earlier equation, we see this expression equals F´1πét
1 pFrobXqpgq ¨ ĆFrobXprx0q “ F´1πét

1 pFrobXqpgqF ¨

F´1
ĆFrobXprx0q “ F´1πét

1 pFrobXqpgqF ¨ Φ
ĂX

prx0q. Therefore, g “ πét
1 pFrobXqpgqF , yielding the assertion.
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4.2.2. There is a canonical map BH Ñ LSrestr,˝H corresponding to the trivial H-local system. This map
is Frobenius equivariant, where Frobenius acts trivially on BH.

Passing to Frobenius fixed points, we obtain a map:

(4.3) τH : H
ad
{ H Ñ LSarthm,˝

H .

Remark 4.2.2.1. Informally, the composition H Ñ H
ad
{ H Ñ LSarthm,˝

H sends h P H to the Weil repre-

sentation WX Ñ H defined by WX ↠ WX{πét
1 pXq

Fr
» Z

1 ÞÑhÝÝÝÑ H. As we only consider the groupoid of Weil
representations, this map factors through the adjoint quotient as desired.

Remark 4.2.2.2. One main idea below is that τH is not too far from being an isomorphism. To
motivate what follows, we observe the following obstruction to τH being an isomorphism. Coarsely (e.g., at
the level of field-valued points), the enemy is clearly Weil representations that are geometrically unipotent
and geometrically non-trivial.

Suppose H “ GL2. Let λ P eˆ and let σλ denote the 1-dimensional Weil group representation where
Frobenius acts as multiplication by λ (and πét

1 pXq acts trivially). Extensions 0 Ñ σλ Ñ σ Ñ σ1 Ñ 0 are
classified by suitable group cohomology for Z, i.e., by H1 of the complex:

HomerZs-modpCét,‚pXq,σλq.

Here Cét,‚pXq is the complex of étale homology for X, and the Z-action has generator acting by geometric
Frobenius on étale homology. If λ ‰ 1, it is easy to see that we have an exact sequence:

0 Ñ H1pHomerZs-modpCét,‚pXq,σλqq Ñ H1
étpX,σλq

φ´1
X ´id

ÝÝÝÝÝÑ H1
étpX,σλq

where φX is the geometric Frobenius acting on H1
ét.

39 Here we have H1
étpX,σλq “ H1

étpX, eq, but with
Frobenius action given as λ times the standard one. Therefore, if λ is a Frobenius eigenvalue appearing in
H1

étpX, eq, we find geometrically non-trivial extensions of the desired type.

4.2.3. Splitting. We obtain a map LSrestrH Ñ BH by restriction to x0. This map intertwines Frobenius
with the identity by40 §4.1.2, so on fixed points we obtain a map:

LSarthmH Ñ H
ad
{ H.

We denote this map by χH “ χH,x0 , and similarly its restriction to LSarthm,˝
H .

By construction, the composition:

H
ad
{ H

τHÝÝÑ LSarthmH
χHÝÝÑ H

ad
{ H

is the identity map.

4.3. Non-resonance.
4.3.1. Define the set RX Ď eˆ as the set of of eigenvalues of the (geometric) Frobenius acting on

H1
étpX, eq ˆ H2

étpX, eq.

Remark 4.3.1.1. By the Weil conjectures for curves, 1 R RX . Also, q always lies in RX (but this is less
relevant to us at the present moment).

39Note that geometric Frobenius for homology and cohomology are transpose (i.e., dual) morphisms. However, if we consider,
say, homology Hét,1pXq “ pπét

1 pXqabq^
ℓ b e with its geometric Frobenius (which corresponds to AdF : πét

1 pXq Ñ πét
1 pXq by

(4.1)) as a Z-representation, the dual Z-action on cohomology has the generator acting by arithmetic Frobenius. This accounts
for the inverse sign in the above formula.

40To be clear, when x0 was not Fq-rational, this equivariance depended on auxiliary choices.
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4.3.2. Let H be an affine algebraic group.
Let V be a finite-dimensional representation of H. Let ρV : H Ñ GLpV q be the corresponding homo-

morphism. Let chV : H
ad
{ H ˆ A1 Ñ A1 be the map fitting into a commutative diagram:

H ˆ A1 GLpV q ˆ A1

H
ad
{ H ˆ A1 A1.

ρV ˆid

pg,λq ÞÑdetpg´λ¨idV q

chV

Explicitly, for h P H and λ P A1, chV prhs,λq is the characteristic polynomial of ρV phq evaluated at λ.

We then let pH
ad
{ Hqnon-res Ď H

ad
{ H denote the open consisting of conjugacy classes rhs such that

ś

λPRX
chhprhs,λq ‰ 0, where h is the adjoint representation of H. Explicitly, pH

ad
{ Hqnon-res is the set of

conjugacy classes rhs such that the matrix ρhphq P GLphq does not have any eigenvalues in RX . We remark

that the open embedding pH
ad
{ Hqnon-res ãÑ H

ad
{ H is clearly affine.

Remark 4.3.2.1. Note that r1s P pH
ad
{ Hqnon-res by Remark 4.3.1.1.

Notation 4.3.2.2. For any stack Y equipped with a structure map to pH
ad
{ Hqnon-res, we let Ynon-res :“

Y ˆ
H

ad

{ H
pH

ad
{ Hqnon-res. We use this notation particularly in the case Y “ LSarthm,˝

H equipped with the

structural map χH .

4.3.3. Main geometric result. The following result compares arithmetic local systems with the adjoint
quotient:

Theorem 4.3.3.1. The map:

τH : pH
ad
{ Hqnon-res Ñ LSarthm,˝,non-res

H

from (4.3) is an isomorphism.

The proof of this result is the subject of §4.4.

4.4. Proof of Theorem 4.3.3.1.
4.4.1. A criterion for a map to be an isomorphism. We begin by observing:

Lemma 4.4.1.1. Let f : Y1 Ñ Y2 be a morphism of algebraic stacks that are locally almost of finite type
(over the algebraically closed field e).

Then f is an isomorphism if and only if:

(i) f is formally étale, i.e., its cotangent complex Ω1
Y1{Y2

P QCohpY1q vanishes.

(ii) The map Y1peq Ñ Y2peq is an isomorphism of (1-)groupoids.

Here we explicitly remark that condition (ii) can be separated into the two separate conditions:

(ii1) For every y1 P Y1peq, the map AutY1peqpy1q Ñ AutY2peqpfpy1qq of automorphism groups is an

isomorphism.41

(ii2) For every y2 P Y2peq, there exists y1 P Y1peq and an isomorphism fpy1q » y2 P Y2peq.

Proof. It suffices to show that for every affine S locally almost of finite type and equipped with a map
S Ñ Y2, the map S ˆY2

Y1 Ñ S is an isomorphism. The properties (i) and (ii) are obviously preserved under
such base-change, so we may assume Y2 is an affine scheme. Moreover, it is standard that Y1 Ñ Y2 is an
isomorphism if and only if Y1 ˆY2

Ycl
2 Ñ Ycl

2 is so; therefore, we may assume Y2 is moreover classical.
Now Y1 is an algebraic stack with trivial automorphism groups at e-points, and therefore an algebraic

space. Moreover, Y1 Ñ Y2 is étale, so Y1 is also classical. Now f is a radicial map (because it is locally of

41We emphasize that there is no room for anything derived here; this is a map between two sets.
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finite type and injective on e-points) and étale, so an open embedding. Finally, because f is surjective on
e-points, it must be an isomorphism.

□

Below, we will verify the above hypotheses for the map τH considered in Theorem 4.3.3.1.
4.4.2. Conventions, formulae, and signs. Before proceeding, we establish certain signs that will be im-

portant. Roughly speaking, it is conceptually difficult to distinguish τHprhsq from τHprh´1sq, but Theorem
4.3.3.1 does distinguish them, so we must explain exactly how to understand the map τH a bit more explicitly.
(The reader is invited to skip this digression and return to it as needed.)

Below, we let FrobX : X Ñ X denote the geometric Frobenius map.
We normalize lisse Weil sheaves on X to be a pair pσ,αq where σ P LissepXq♥ “ qLissepXq♥ is equipped

with an isomorphism α : σ
»ÝÑ Frob˚

Xpσq. The direction of the map α is the “sign” in question. Let us
explain first why (and in what sense) this sign is the right one for our existing conventions.

Note that V :“ x˚
0 pσq is a representation ρgeom of πét

1 pXq. We also obtain an isomorphism:

(4.4) V “ x˚
0 pσq

αx0ÝÝÑ FrobXpx0q˚pσq
(4.2)
» x˚

0 pσq “ V

that we denote by ρpF q. In the notation of §4.1.1, one finds tautologically that ρpF q˝ρgeompgq “ ρgeompπét
1 pFrobXqpgqq˝

ρpF q. By (4.1), we can rewrite this equation as:

ρpF qρgeompgqρpF q´1 “ ρgeompFgF´1q

so we obtain representation of WX on V with F acting by (4.4) – had α gone the other way, we would need
to invert (4.4).

Similarly, for H an affine algebraic group, a Weil H-local system is an H-local system σH on X with

an isomorphism α : σH
»ÝÑ Frob˚

XpσHq (of H-local systems). As a consequence, for h P H, τHprhsq has σH

trivial and α is given as multiplication by h. This ensures that the corresponding Weil group representation
WX Ñ Hpeq factors through Z “ WX{πét

1 pXq and sends the generator to h (as it was supposed to).
Finally, for a lisse Weil sheaf pσ,αq, the natural “geometric” Frobenius action φσ on its cohomology is

given by the operator:

(4.5) CétpX,σq Ñ CétpX,Frob˚
Xpσqq α´1

ÝÝÑ CétpX,σq

where the first map is the tautological one.

Remark 4.4.2.1. We wish to be clear about the logical status of the above material. First, we have
argued that the map α should be considered as going in a certain direction. But at some level, this is a
moral argument, not a mathematical one. Rather, we have made explicit a certain42 convention that was
implicit before (and shown how it leads to the orientation informally suggested in Remark 4.2.2.1). Logically
speaking, establishing this convention was strictly necessary for the statement of Theorem 4.3.3.1.

4.4.3. τH is formally étale. We will show that τH |
pH

ad

{ Hqnon-res
is formally étale.

First, note that we are reduced to checking that the tangent complex vanishes (e.g., both sides have
perfect cotangent complexes). Moreover, we can check this on fibers at all e-points as both sides are locally
almost of finite type.

In general, for σ P LSarthmH peq, we can compute the tangent complex as:43

TLSarthm
H ,σ “ CétpX, hσr1sqZ “ Ker

`

id´φσ : CétpX, hσr1sq Ñ CétpX, hσr1sq
˘

.

Here hσ is the adjoint Weil local system on X induced by σ, CétpX, hσr1sq is its étale cohomology complex
(up to shift), and we are taking Z-invariants with respect to the action of the Frobenius φσ (coming from
the Weil structure on σ).

42For even more clarity: H
ad
{ H “ pBHqS

1
has an automorphism of “loop reversal,” and we need to remove the ambiguity

this automorphism provides.
43See [2] Proposition 2.2.2, §24.5.1.
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For h P Hpeq, the tangent complex T
H

ad

{ H,rhs
P Vect is the homotopy kernel (i.e., shifted cone):

T
H

ad

{ H,rhs
“ Kerpid´Adh : hr1s Ñ hr1sq

where Adh is the adjoint action of h on h; more naturally, writing H
ad
{ H “ MapspBZ,BHq and this formula

yields Z-invariants for the Z-action on hr1s “ TBH,Specpkq with generator acting by Adh. (One consequence:
we see that in the above description of T

H
ad

{ H,rhs
could have used Adh´1 in place of Adh.)

On the other hand, we have:

CétpX, hτHprhsqr1sq “ CétpX, eq b hr1s

with Frobenius:
φτHprhsq “ φX b Adh´1

where the inverse occurs because of the appearance of α´1 in (4.5).
The Frobenius equivariant map e “ H0pX, eq Ñ CétpX, eq (with Frobenius acting trivially on the source)

induces a commutative diagram:

hr1s “ e b hr1s hr1s “ e b hr1s

CétpX, eq b hr1s CétpX, eq b hr1s.

id ´ Adh´1

id ´φXbAdh´1

Passing to (homotopy) kernels along the rows yields the differential for τH at rhs.44

Therefore, we see that τH is formally étale at rhs if and only if:

id´φX b Adh´1 : τě1 CétpX, eq b h Ñ τě1 CétpX, eq b h

is an isomorphism, or equivalently, the induced maps on cohomology:

id´φX b Adh´1 : H1
étpX, eq b h Ñ H1

étpX, eq b h

id´φX b Adh´1 : H2
étpX, eq b h Ñ H2

étpX, eq b h

are isomorphisms. Clearly this happens exactly when 1 is not an eigenvalue of φX b Adh´1 , which occurs
exactly when 1 cannot be written as λ ¨ µ for λ an eigenvalue of φX and µ an eigenvalue of Adh´1 “ Ad´1

h ,

i.e., when no eigenvalues of Adh lie in RX . This is the defining condition for rhs to lie in pH
ad
{ Hqnon-res, so

we obtain the claim.
4.4.4. Stabilizers. Next, we verify condition (ii1) from Lemma 4.4.1.1. In fact, this is obvious, and we

will never use the subtleties of non-resonance in this step. We explicitly spell out the argument here:
Suppose σ P LSarthmH peq. By definition, σ lifts to a continuous Weil group representation ρ : WX Ñ Hpeq

that is well-defined up to conjugacy. In this case, AutLSarthm
H peqpσq is the stabilizer of the image of ρ in Hpeq.

Similarly, an e-point in H
ad
{ H lifts to some h P Hpeq, and Aut

H
ad

{ Hpeq
prhsq is the stabilizer of h.

Now for h P H, τHprhsq is the Weil group representation WX Ñ Z
1 ÞÑhÝÝÝÑ Hpeq, whose stabilizer obviously

coincides with that of h.
4.4.5. Lifting isomorphism classes: setup. Finally, we verify (ii2). Suppose σ P LSarthm,˝,non-res

H peq. We
lift σ to a continuous representation ρ : WX Ñ Hpeq. Let ρ0 : πét

1 pXq Ñ Hpeq denote the restriction of ρ to
the geometric fundamental group; our task is to show that ρ0 is trivial.

This is a concrete linear algebra problem; we spell out the details below. We use the notation of §4.1.1
(in particular, F P WX and g ÞÑ Fg). In addition, we introduce more notation:

‚ Let H˝ Ď H denote the Zariski closure of Imagepρ0q.
‚ Let θ : H˝

»ÝÑ H˝ denote the adjoint action of ρpF q, i.e., θphq “ AdρpF qphq.

44To see this, consider H
ad
{ H as the moduli of arithmetic local systems on Specpkq, then apply the above discussion about

LSarthmH accordingly.
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In these terms, note that we have:

(4.6) ρ0pFgq “ θpρ0pgqq for all g P πét
1 pXq.

We now make the following additional observations about our hypotheses.
First, that ρ0 defines a point in LSrestr,˝H Ď LSrestrH means that ρ0 factors through a unipotent subgroup

of H by [2] Proposition 3.7.2. Equivalently, H˝ is unipotent.
Second, note that the non-resonance condition means that AdρpF q “ Liepθq : h Ñ h has no eigenvalues

in RX .
4.4.6. Lifting isomorphism classes: proof. In the above notation, our task is to show that H˝ is trivial.

By unipotence, it suffices to show that its abelianization Hab
˝ is trivial. Let V :“ LiepHab

˝ q; as Hab
˝ is an

abelian unipotent group, we abuse notation in identifying it with (the e-scheme associated with) its Lie
algebra.

By functoriality, θ induces an automorphism of V , which we also denote by θ. Suppose V ‰ 0; then
there exists an eigenvector µ P V _ for the transpose θ_ : V _ Ñ V _; we let λ P eˆ denote its eigenvalue.
Note that by the non-resonance assumption, λ R RX .

We now obtain a continuous homomorphism:

πét
1 pXq H˝peq V e

ρ0

ρ0

µ

that by (4.6) satisfies:

(4.7) ρ0pFgq “ λ ¨ ρ0pgq.

We also remark that KerpH˝peq Ñ V Ñ eq is the set of e-points of an algebraic subgroup of H˝, so by
definition of the latter, the homomorphism ρ0 must be non-trivial.

Now ρ0 extends to a non-zero e-linear map H ét
1 pX, eq Ñ e, i.e., it comes from a non-zero cohomology

class η P H1
étpX, eq. As g ÞÑ Fg induces the (geometric) Frobenius on H ét

1 pX, eq (see (4.1)), (4.7) means:

φXpηq “ λ ¨ η.

This contradicts the non-resonance assumption, so we conclude that V “ 0, as was desired.

4.5. Setup for the proof of Theorem 3.5.2.1. We now begin the proof of Theorem 3.5.2.1.
4.5.1. Recall that our objective is to define the commutative diagram (3.11) and verify certain properties

of it.
We begin by defining a certain function δ : Ť Ñ A1 as:

δptq :“
ź

λPRX

chǧpt,λq, t P Ť

where we use notation as in §4.3.2, and are considering ǧ as a representation of Ť via the adjoint action.
More explicitly, we have:

δptq “
ź

λPRX

p1 ´ λqdimpŤ q
ź

α̌P∆̌

pα̌ptq ´ λq

where we consider α̌ as a map Ť Ñ Gm Ď A1.
Clearly δ is a W -invariant morphism, so induces a map Ť {{W Ñ A1; we also denote this function by δ.
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4.5.2. We now form a commutative diagram:

(4.8)

LSarthm,˝
B̌

LSarthm,˝
Ť

B̌
ad
{ B̌ LSarthm,˝

Ǧ

Ť
ad
{ Ť Ǧ

ad
{ Ǧ

Ť {{W

A1

χB̌

χŤ χǦ

δ

We now define δǦ so that its restriction to LSarthm,˝
Ǧ

is given by the unique map LSarthm,˝
Ǧ

Ñ A1

appearing in the diagram (4.8), and so its restriction45 to LSarthmǦ zLSarthm,˝
Ǧ

is identically 0. We define δŤ
in exactly the same way, replacing Ǧ by Ť everywhere in the previous sentence.

Below, we check that the pair of maps pδǦ, δŤ q satisfy the conclusions of Theorem 3.5.2.1.
4.5.3. First, the commutative diagram (3.11) clearly exists by (4.8).
4.5.4. Second, we need to check (1) from Theorem 3.5.2.1, i.e., that δǦ takes a non-zero value at the

trivial Weil local system. By construction, it is enough to show δp1q ‰ 0. Clearly δp1q “
ś

λPRX
p1´λqdimpGq,

and we recall that 1 R RX (see Remark 4.3.1.1).

4.5.5. Next, we observe that the locus where δǦ is non-zero is exactly LSarthm,˝,non-res
Ǧ

(by definition).
Therefore, by Theorem 4.3.3.1, we have:

(4.9) ΓpLSarthmǦ ,ωqrδ´1
Ǧ

s “ ΓpLSarthm,˝,non-res
Ǧ

,ωq » ΓppǦ
ad
{ Ǧqnon-res,ωq

which is concentrated in degree zero because it is a localization of ΓpǦ
ad
{ Ǧ,ωq » ΓpǦ

ad
{ Ǧ,Oq at a function

Ǧ
ad
{ Ǧ Ñ A1, verifying hypothesis (2) from Theorem 3.5.2.1.
4.5.6. It remains to verify the surjectivity (i.e., Theorem 3.5.2.1 (3)). We will do this in the remainder

of the section; here we make some preliminary, orienting remarks.
Recall the setting of Lemma 3.7.1.1. We observe that we have two maps:

ΓpLSarthmŤ ,ωqrδ´1
Ť

s Eisspec

ÝÝÝÝÑ ΓpLSarthmǦ ,ωqrδ´1
Ǧ

s “ ΓpLSarthm,˝,non-res
Ǧ

,ωq
(4.9)
»

ΓpǦ
ad
{ Ǧ,ωqrpδǦ ˝ τǦq´1s “ ΓppǦ

ad
{ Ǧqnon-res,ωq.

and:

ΓpLSarthmŤ ,ωqrδ´1
Ť

s Thm. 4.3.3.1“ ΓpŤ
ad
{ Ť ,ωqrpδŤ ˝ τŤ q´1s Eisspec,toy

ÝÝÝÝÝÝÑ

ΓpǦ
ad
{ Ǧ,ωqrpδǦ ˝ τǦq´1s “ ΓppǦ

ad
{ Ǧqnon-res,ωq.

By Corollary 3.7.2.1, we would be done if these two maps coincided.
This expectation is somewhat too naive: we instead show that they coincide up to invertible L-values,

which will suffice for our purposes.

45We remind that LSrestr,˝
Ǧ

Ď LSrestr
Ǧ

is a connected component, so this process of defining the function on LSarthm,˝
Ǧ

:“

LSarthm
Ǧ

ˆLSrestr
Ǧ

LSrestr,˝
Ǧ

and setting it to be zero elsewhere is legitimate.
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4.6. L-values and traces. In §4.5.6, we made an opaque remark about L-values. In this subsection,
we will make a precise connection between categorical traces and L-values; this is the main computational
input we will need.

In what follows, we let H denote a unipotent algebraic group over e. (In practice, H “ Ň .)
4.6.1. Classes and traces. Suppose C P DGCatcont is a dualizable DG category and T : C Ñ C is an

endofunctor.
Let Cc Ď C denote the subcategory of compact objects and let Cc,T,lax denote the category of pairs pF,αq

where F P Cc and α : F Ñ T pFq is a morphism in C.
Given some pF,αq as above, there is a canonical point clpF,αq P Ω8 trCpT q. Indeed, this follows from

the functoriality of traces as in §3.2.5; equip Vect with the identity self-map, F as a functor Vect Ñ C, and
α as a lax intertwining map, so functoriality gives a map e “ trVectpidVectq Ñ trCpT q P Vect, i.e., a point
clpF,αq P Ω8 trCpT q.

More generally, we recall that there is a map clp´q : KpCc,T,laxq Ñ trCpT q P Spectra of spectra from the
K-theory spectrum of Cc,T,lax to the trace of T (with the latter considered as a spectrum via the forgetful
functor Vect Ñ Spectra).

Notation 4.6.1.1. Note that Vectc,id,lax “ tW P Vectc,φ : W Ñ W u is a symmetric monoidal category

and as such acts canonically on Cc,T,lax in the above setting. Explicitly, for pW,φq P Vectc,id,lax and pF,αq P
Cc,T,lax, W b F is equipped with the endomorphism φ b id` idbα.

Under the class map, one has:

(4.10) clpW b F,φ b id` idbαq “ trW pφq ¨ clpF,αq.

(We do not need this, but this identity can easily be upgraded to a suitable statement at the level of spectra.)
4.6.2. Statement of the problem. Recall that H is unipotent. By [2] Proposition 3.3.2, LSrestrH is a quasi-

compact algebraic stack; in particular, its structure sheaf OLSrestr
H

P QCohpLSrestrH q is compact (unlike for

non-unipotent groups). By abuse of notation, we will let OLSrestr
H

denote the “same” object of IndCohpLSrestrH q

under the fully faithful embedding QCohpLSrestrH q ãÑ IndCohpLSrestrH q (usually denoted “Ξ” in the literature
on IndCoh).

We have a map τ0 : BH Ñ LSrestrH corresponding to the trivial local system. We can then form
τ IndCoh0,˚ pOBHq P IndCohpLSrestrH q.

Note that both objects OLSrestr
H

, τ IndCoh0,˚ pOBHq are coherent and carry obvious canonical Frobenius equi-

variant structures. Therefore, we may form their classes:46

clpOLSrestr
H

,αq, clpτ IndCoh0,˚ pOBHq,αq P Ω8ΓpLSarthmH ,ωq.

Our goal is to compare these two classes.
4.6.3. An L-value. Let ζXptq “

ř

ně0 |X0pFn
q q|tn P Qptq Ď Qpptqq denote the ζ-function of the curve X.

We remind that the ζ-function has the form:

ζXptq “
pXptq

p1 ´ tqp1 ´ qtq
, pXptq P Qrts.

Let ζ‹
Xptq “ p1 ´ tq ¨ ζXptq. By the Weil conjectures, ζ‹

Xp1q is non-zero and so equals the leading term of the
Taylor expansion47 of ζXptq at t “ 1.

4.6.4. Main lemma. We will prove:

Lemma 4.6.4.1. There exists an equivalence:

clpτ IndCoh0,˚ pOBHq,αq » ζ‹
Xp1qdimH ¨ clpOLSrestr

H
,αq P Ω8ΓpLSarthmH ,ωq.

Less homotopically, this result simply means that the images of the two points above in the set π0pΩ8ΓpLSarthmH ,ωqq “
H0ΓpLSarthmH ,ωq are equal.

46By unipotence of H, note that every point of LSarthmH is non-resonant, i.e., the map H
ad
{ H Ñ LSarthmH is an isomorphism.

47Note that – unlike in number theory – we are expanding in the variable t “ q´s rather than in s itself.
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Proof.

Step 1. We begin with a toy model.
Let V and W be finite-dimensional vector spaces equipped with endomorphisms φV and φW .
Let Y denote the stack (over e) V ˆΩ0W , which we consider equipped with the self-map φ “ φV ˆΩ0φW ;

here Ω0W is the derived loop space 0 ˆW 0.
We let e.g. O0 P CohpYq denote the structure sheaf at the origin, OV P CohpYq denote the structure sheaf

of V Ď Y, etc.
We use the category CohpYqφ˚,lax of lax φ˚-equivariant coherent sheaves on Y, i.e., CohpYqφ˚,lax “ tF P

CohpYq,α : F Ñ φ˚pFqu (see §4.6.1).
Koszul resolutions provide identities:

(4.11)

ÿ

p´1qirΛiW_ b OV s » rOYs
ÿ

p´1qjrΛjV _ b OV s » rO0s.

Here the notation means the following. First, ΛiW_ bOY P CohpYqφ˚,lax is equipped with the lax equivariant
structure from Notation 4.6.1.1, where ΛiW_ is equipped with the endomorphism Λiφ_

W ; similar notation
holds for ΛjV _ b OV . The notation r´s is used for the class in the K-theory spectrum48 KpCohpYqφ˚,laxq.

By (4.10), we find:

clpO0,αq “
ÿ

p´1qj trpΛjφ_
V q ¨ clpOV ,αq “

ÿ

p´1qj trpΛjφV q ¨ clpOV ,αq “

detpidV ´φV q ¨ clpOV ,αq P Ω8ΓpYφ,ωq

for Yφ the derived fixed points.
Similarly, we have:

clpOY,αq “ detpidW ´φW q ¨ clpOV ,αq P Ω8ΓpYφ,ωq.

Comparing these two identities, we obtain:

detpidW ´φW q ¨ clpO0,αq “ detpidV ´φV q ¨ clpOY,αq.

Now assume that detpidW ´φW q is non-zero, so is invertible in the field e. We obtain:

clpO0,αq “
detpidV ´φV q
detpidW ´φW q

¨ clpOY,αq P Ω8ΓpYφ,ωq.

Taking V “ H1
étpXq and W “ H2

étpXq equipped with their Frobenii endomorphisms, we observe that:

detpidV ´φV q
detpidW ´φW q

“ ζ‹
Xp1q

by Grothendieck’s trace formula.

Step 2. Next, suppose we are in the following more general setup.
We suppose that Z is a QCA stack equipped with an endomorphism φ “ φZ and is equipped with a

quasi-smooth map Z Ñ Y “ V ˆ Ω0W intertwining the maps φ.
We let Z0 denote the fiber of Z over 0 P Y. We note that Z0 is eventually coconnective, so OZ0 is a

coherent sheaf on Z.
The previous analysis then shows:

(4.12) clpOZ0 ,αq “
detpidV ´φV q
detpidW ´φW q

¨ clpOZ,αq P Ω8ΓpZφ,ωq

(assuming 1 is not an eigenvalue of φW ).

48One could also simply use Grothendieck groups for our purposes.
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Step 3. We now wish to apply the above formalism to deduce our claim.
Choose a nested sequence t1u “ H0 Ď H1 Ď . . . Ď Hr “ H of subgroups with each Hi normal in H and

Hi`1{Hi » Ga. We remark that r “ dimpHq.
Then define algebraic stacks:

Zi :“ LSrestrH ˆ
LSrestr

H{Hi

BpH{Hiq

where BpH{Hiq Ñ LSrestrH{Hi
is the map τ0, i.e., it corresponds to trivial H{Hi-local systems on X. Observe

that Zr “ LSrestrH , Z0 “ BH, and we have closed embeddings:

Z0 ãÑ Z1 ãÑ . . . ãÑ Zr.

We can rewrite the definition of Zi as follows. Note that H{Hi acts on the classifying stack BHi;
formally, this is encoded by the fiber sequence BHi Ñ BH Ñ BpH{Hiq. Unwinding the definitions, this
induces an action of H{Hi on LSrestrHi

. We then have:

Zi » LSrestrHi
{pH{Hiq.

Now for each i, we have a diagram:

H{Hi H{Hi`1 BGa

LSrestrHi
LSrestrHi`1

LSrestrGa

ñ ñ ñ

where the rows are fiber sequences and the top row is a fiber sequence of groups. Here the action of BGa on
LSrestrGa

is induced by the homomorphism of group stacks BGa Ñ LSrestrGa
corresponding to pullback of local

systems along X Ñ Specpkq (i.e., the map τ0 for Ga). Passing to quotients in this diagram and identifying49

LSrestrGa
» BGa ˆ H1

étpXq ˆ Ω0H
2
étpXq, we obtain a fiber square:

Zi Zi`1

Specpkq LSrestrGa
{BGa H1

étpXq ˆ Ω0H
2
étpXq

We now obtain the result by induction from the previous step.50

□
4.6.5. An extended digression: divergent series via categorical traces. We explain a general format for

thinking about the above proof of Lemma 4.6.4.1. This material is informal and may be skipped. However,
we believe it is an important philosophical point that we wish to highlight.

Roughly speaking, the idea is that so-called categorical functional analysis (e.g., fine considerations about
distinctions between Perf and Coh) relate to actual analysis (e.g., summing infinite series) via categorical
traces. Strikingly, we will see that Hochschild homology allows us to sometimes “correctly” evaluate infinite
sums without ever mentioning a topology on the field e in which they occur.

We consider the following geometric setup. Let Y be an algebraic stack (over e), which we assume is
quasi-smooth and QCA. Assume Y is equipped with a self-map φ : Y Ñ Y. The functor:

ΥY : QCohpYq Ñ IndCohpYq

F ÞÑ F b
OY

ωY

preserves compact objects and intertwines the self-maps φ˚ and φ! of the source and target. Moreover, this
functor is a morphism of QCohpYq-module categories.

49We note that by purity, there is a canonical such splitting compatible with Frobenius.
50Formally, the induction should be done on K-theory classes, generalizing (4.11). We map to Hochschild homology only at

the end.
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Now recall (e.g., [15] §3.8.8) that for a dualizable QCohpYq-module category C with an endofunctor
T : C Ñ C suitably compatible with φ˚, there is a canonical object:

trenhpT q P QCohpYφq

with the basic property that ΓpY, trenhpT qq “ trpT q P Vect. This construction satisfies the usual functoriality
properties for traces. We have:51

trenhpφ˚q “ OYφ

trenhpφ!q “ ωYφ

and then ΥY yields a canonical map:

τ : OYφ “ trenhpφ˚q Ñ trenhpφ!q “ ωY P QCohpYφq.

(This map τ can be thought of as a weak Calabi-Yau structure on the derived fixed points.)
We let Yφ,good Ď Yφ denote the locus of points where τ is an isomorphism. Note that Yφ,good contains

pYsmqφ (the fixed points of the smooth locus of Y) but in general is larger: one can in fact verify that Yφ,good

is exactly the quasi-smooth locus of Yφ.
Now, any perfect object F P PerfpYq with a self map α : F Ñ φ˚pFq yields a class:

clpF,αqQCohpYq P Ω8ΓpYφ,Oq

i.e., a function on the fixed points Yφ of φ. In this notation, we use the subscript clp´,´qQCoh to emphasize
that we are considering F as an object of QCoh (this will be an important distinction soon). This function
can be understood quite explicitly; at a point y P Yφ, we take the trace of the resulting map:

(4.13) βy : y˚pFq αÝÑ y˚pφ˚pFqq “ φpyq˚pFq » y˚pFq

where the last isomorphism uses the identification y » φpyq implicit in y being a fixed point. In other words,
we have:

clpF,αqQCohpYq “ py ÞÑ trpβyqq.

Now suppose instead that F P CohpYq, though still equipped with a map α : F Ñ φ˚pFq. Because F may
not be compact in QCohpYq, we cannot form its class in ΓpYφ,Oq any longer. However, we can twist and
form F b ωY, which lies in Coh because Y is quasi-smooth (so Gorenstein). We then obtain a map:

rα “ α b id : F b ωY Ñ φ˚pFq b ωY “ φ!pF b ωYq.

Therefore, we can form the class:
clpF b ωY, rαqIndCoh P ΓpYφ,ωφq.

Tautologically, in the special case where F P PerfpYq Ď CohpYq, we have:

(4.14) clpF b ωY, rαqIndCoh “ τpclpF,αqQCohq.

Following this equation, we define the regularized class:

clregpF,αqQCoh P Ω8ΓpYφ,good,Oq

as the image of clpF b ωY, rαqIndCoh under the composition:

ΓpYφ,ωq Ñ ΓpYφ,good,ωq
τ´1

» ΓpYφ,good,Oq.

By construction, this regularized class coincides with (the restriction to Yφ,good of) clpF,αqQCoh when F is
perfect.

Suppose y P Yφ. The map (4.13) still makes sense. However, if F is not perfect near y, then while the
complex (4.13) is finite-dimensional in each degree, it is unbounded from below, so the trace of βy is not well
defined. We define the regularized trace:

trregpβyq :“ pclregpF,αqQCohqpyq

51In this formula, we consider ωYφ as an object of QCoh, not of IndCoh. In other words, we implicitly are taking the “true”

dualizing sheaf in IndCoh and applying the forgetful functor Ψ : IndCohpYφq Ñ QCohpYφq to it. As ωYφ is a line bundle, this is
a quite mild thing to have done, so we do not specifically demarcate it in the notation.
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as the value of the regularized class at y P Yφ.
Heuristically, the regularized trace can be thought of as assigning an actual value to the infinite sum:

(4.15)
ÿ

iPZ

p´1qi trpHipβyqq : Hipy˚pFqq Ñ Hipy˚pFqq P e

where we reiterate that the summands are each well-defined, the summands vanish for i " 0, but generally,
an infinite number of summands appear.

Example 4.6.5.1. Let us explain how this works in the simplest possible case. Suppose Y “ Ω0A
1 and

φ is multiplication by a number λ P e. Take the sheaf F to be O0, the structure sheaf of the point 0 P Ω0A
1.

Note that 0 is canonically a fixed point of φ, so we can think of 0 as a point of Yφ. By a standard calculation,
0˚pO0q has 1-dimensional cohomology in even non-positive cohomological degrees and vanishing cohomology
outside these degrees; moreover, the map β0 acts on H´2ip0˚pO0qq as multiplication by λi. Therefore, the
sum from (4.15) is the geometric series

ř

iě0 λ
i. We emphasize that this is a formal expression; at the

moment, λ is an arbitrary element of the field λ and is in no sense “small.”
Now suppose λ ‰ 1. Then 0 P Yφ,good (in fact, Yφ,good “ Yφ “ Specpeq “ t0u). Then the regularized

trace trregpβ0q is well-defined, and the (completely elementary) argument from Step 1 from the proof of
Lemma 4.6.4.1 calculates:

trregpβ0q “
1

1 ´ λ
.

In other words, we have given direct, purely algebraic meaning to the geometric series formula
ř

λi“=” 1
1´λ ,

which usually requires us to know λi iÑ8Ñ 0 in some suitably analytic sense.

Remark 4.6.5.2 (Regularized traces and functional equations). Suppose now that φ : Y Ñ Y is in fact
an isomorphism. Then φ˚ “ φ! (say, as functors restricted to Perf or Coh). Therefore, for F P PerfpYq with
α : F Ñ φ˚pFq, we also obtain a mp α1 : F Ñ φ!pFq. For y P Yφ, we obtain a canonical map:

γy : y!pFq Ñ y!pFq

defined in the same way as βy. As F is perfect, we have:

y!pFq “ y!pF b ωY b ω´1
Y q “ y!pF b ωYq b y˚pω´1

Y q “ y˚pFq b y˚pωYqb´1.

This map intertwines γy (for F) with βy (for both F and ωY). If we set 󰂃y to be the trace of the map:

y˚pωYq Ñ y˚pωYq

constructed using γy (and the obvious isomorphism ωY » φ!pωYq “ φ˚pωYq), we find:

󰂃y ¨ trpγyq “ trpβyq.

Now we can define trregpγyq exactly as we did for coherent F when y P Yφ,good. We obtain a tautological
“functional equation:”

󰂃y ¨ trregpγyq “ trregpβyq

(where 󰂃y is thought of as an 󰂃-factor).
Let us see how this logic plays out in the setting of Example 4.6.5.1. We should have λ ‰ 0 so that

φ is an isomorphism. We note that 0!pO0q has cohomology in even non-negative degrees, and the action of
γ0 on H2ip0!pO0qq is multiplication by λ´i. Also, 0˚pωq “ er´1s with “γ” operator multiplication by λ´1.
Therefore, the regularized trace trregpγ0q heuristically makes sense of the sum:

trregpγ0q“=”
ÿ

iě0

λ´i

while 󰂃0 “ ´λ´1.
Therefore, in this case, our functional equation heuristically yields:

´λ´1
ÿ

iě0

λ´i“=”ε0 tr
regpγ0q “ trregpβ0q“=”

ÿ

iě0

λi.
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This resulting equation ´λ´1
ř

iě0 λ
´i“=”

ř

iě0 λ
i is a favorite from the world of divergent series; over C,

the left hand side is defined for |λ| ą 1 while the right hand side is defined for |λ| ă 1, but, of course, the
analytic continuations of these two functions coincide on their domains.

We note that this sort of manipulation with divergent series is closely related to the functional equation
for the ζ-function of an algebraic curve.

Remark 4.6.5.3. It would be of great interest to interpret categorically some analytic aspects of the
analytic theory of automorphic forms over function fields using some version of the above ideas.

4.6.6. Variant. In practice, we need a slight extension of the discussion of §4.6.4.
Let H be a unipotent group as before, and now let S be a torus acting on H by automorphisms. (In

practice, S “ Ť acting on H “ Ň .) For brevity, we let Q denote the semi-direct product S ˙ H.
In this case, we define a rational map:

ζ‹
X,H,S : S 󰃚󰃚󰃄 A1

via the formula:

ps P Sq ÞÑ
det

`

id´Ads´1 bφX ñ h b H1
étpXq

˘

det
`

id´Ads´1 bφX ñ h b H2
étpXq

˘ .

Here φX is the Frobenius acting on étale cohomology of X while we abuse notation somewhat in letting Ad´

denote the action of S on h coming from the action of S on H.

Remark 4.6.6.1. Note that ζ‹
X,H,S is defined at 1 P S and takes the value ζ‹

Xp1qdimH there (see Lemma

4.6.4.1).

Remark 4.6.6.2. Suppose µ1, . . . , µr : S Ñ Gm are the characters of S appearing in its representation
h, counted with multiplicities (so r “ dimpHq). Then we have:

ζ‹
X,H,Spsq “

r
ź

i“1

ζ‹
Xpµips

´1qq.

In particular, the domain of definition of ζ‹
X,H,S is Xits P S | µipsq ‰ qu, and ζ‹

X,H,S is (defined and)

invertible on Xits P S | µipsq R RXu.

It will be convenient also to introduce the notation:

pX,H,Spsq “ det
`

id´Ads´1 bφX ñ h b H1
étpXq

˘

“
r

ź

i“1

pXpµips
´1qq

qX,H,Spsq “ det
`

id´Ads´1 bφX ñ h b H2
étpXq

˘

“
r

ź

i“1

p1 ´ q ¨ µips
´1qq

so pX,H,S and qX,H,S are (regular) functions on S with ζ‹
X,H,S “ pX,H,S

qX,H,S
.

We introduce the notation:

LSrestrQ;S :“ LSrestrQ ˆ
LSrestr

S

BS “ pLSrestrH q{S.

We observe that LSrestrQ;S is a quasi-compact algebraic stack (by unipotence of H). We let LSarthmQ;S denote the

Frobenius fixed points of LSrestrQ;S . Explicitly, we have:

LSarthmQ;S “ LSarthmQ ˆ
LSarthm

S

S
ad
{ S.

We let τ1 : BQ Ñ LSrestrQ;S denote the evident map.

Remark 4.6.6.3. To be more explicit, we remind that S
ad
{ S

»ÝÑ LSarthm,˝
S by Theorem 4.3.3.1, recalling

that S is a torus. Therefore, LSarthmQ;S is the connected component of the identity in LSarthmQ .
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Lemma 4.6.6.4. There exists an equivalence:

qX,H,S ¨ clpτ IndCoh1,˚ pOBQq,αq » pX,H,S ¨ clpOLSrestr
Q;S

,αq P Ω8ΓpLSarthmQ;S ,ωq.

Remark 4.6.6.5. Informally, the lemma should be understood as saying:

clpτ IndCoh1,˚ pOBQq,αq » ζ‹
X,H,S ¨ clpOLSrestr

Q;S
,αq

Proof of Lemma 4.6.6.4. The proof is essentially identical to that of Lemma 4.6.4.1. The differences
are as follows.

First, in Step 1, one should assume V and W are S-representations, and one should account for the
S-action in (4.11). That the dual representations V _ and W_ appear in (4.11) accounts for the appearance
of s´1 rather than s in the definition of ζ‹

X,H,S above.
Second, one should note that the subgroups Hi from the proof of Lemma 4.6.4.1 can be taken to be

invariant under the S-action (proof: diagonalize the S-action on h{rh, hs and proceed by induction).
Otherwise, the argument proceeds verbatim.

□

4.7. Conclusion. We now return to the setting of §4.5.
4.7.1. Let LSarthmŤ,δŤ ‰0 Ď LSarthmŤ denote the non-vanishing locus of δŤ .

We have a rational function:

LSarthm,˝
Ť

Thm. 4.3.3.1“ Ť
ad
{ Ť “ Ť ˆ BŤ

p1ÝÑ Ť
ζX,Ň,Ť󰃚󰃚󰃄 A1

that is clearly defined and invertible on LSarthmŤ,δŤ ‰0. By abuse of notation, we also let ζX,Ň,Ť denote the

resulting map:

ζX,Ň,Ť : LSarthmŤ,δŤ ‰0 Ñ A1z0.

4.7.2. We now prove the following result:

Theorem 4.7.2.1. There is a commutative diagram:

ΓpLSarthmŤ,δŤ ‰0,ωq ΓpLSarthmŤ ,ωqrδ´1
Ť

s ΓppǦ
ad
{ Ǧqnon-res,ωq

ΓpLSarthmŤ,δŤ ‰0,ωq ΓpLSarthmŤ ,ωqrδ´1
Ť

s ΓpǦ
ad
{ Ǧ,ωqrpδǦ ˝ τǦq´1s ΓppǦ

ad
{ Ǧqnon-res,ωq.

Eisspec

id
ζX,Ň,Ť ¨´»

Eisspec,toy

Using Corollary 3.7.2.1, this clearly yields the desired surjectivity from §4.5.6. Therefore, it remains to
prove this theorem.

Proof of Theorem 4.7.2.1.

Step 1. The commutative diagram:

BB̌ LSrestrB̌

BǦ LSrestrǦ

τB̌

ptoy
p

τǦ

of stacks under proper morphisms yields an identification of the resulting two functors:

ReppB̌q Ñ IndCohpLSrestrǦ q

preserving compact objects.
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Passing to traces of Frobenius, this yields a commutative diagram:

(4.16)

ΓpB̌
ad
{ B̌,ωq ΓpLSarthmB̌ ,ωq

ΓpǦ
ad
{ Ǧ,ωq ΓpLSarthmǦ ,ωq.

Step 2. Next, form the commutative square:

BB̌ LSrestrB̌

BŤ LSrestrŤ

τB̌

qtoy q

τŤ

We obtain a natural transformation:

q˚,IndCohτ IndCoh
Ť,˚ Ñ τ IndCoh

B̌,˚ qtoy,˚,IndCoh

of functors:

ReppŤ q Ñ IndCohpLSrestrB̌ q.

But this functor is not an isomorphism, so mere functoriality of traces has little to say about it.
Still, we claim that we have a commutative diagram:

(4.17)

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthmB̌ ,ωq

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq.

pX,Ň,Ť ¨´ trpq˚,IndCohτ IndCoh
Ť,˚ q

qX,Ň,Ť ¨´
trpτ IndCoh

B̌,˚ qtoy,˚,IndCohq

To construct this diagram, note that the maps are naturally morphisms of ΓpLSarthmŤ ,Oq-modules. This

algebra clearly acts on ΓpŤ
ad
{ Ť ,ωq (the source of the diagram we wish to construct) through its factor:

ΓpLSarthm,˝
Ť

,Oq “ ΓpŤ
ad
{ Ť ,Oq.

Therefore, it suffices to produce a commutative diagram:

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthmB̌ ,ωq ΓpLSarthm,˝

B̌
,ωq

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthmB̌ ,ωq ΓpLSarthm,˝

B̌
,ωq

pX,Ň,Ť ¨´ trpq˚,IndCohτ IndCoh
Ť,˚ q proj

qX,Ň,Ť ¨´ trpτ IndCoh
B̌,˚ qtoy,˚,IndCohq proj

of ΓpŤ
ad
{ Ť ,Oq-modules (as LSarthm,˝

B̌
“ LSarthmB̌ ˆLSarthm

Ť
LSarthm,˝

Ť
).

Recall that the dualizing sheaf on H
ad
{ H is canonically trivial. This trivialization can be constructed

as follows: the equivalence QCohpBHq ΞÝÑ IndCohpBHq gives an isomorphism on Hochschild homology

ΓpH
ad
{ H,Oq »ÝÑ ΓpH

ad
{ H,ωq. Let volH P Ω8ΓpH

ad
{ H,ωq denote the resulting generator – explicitly, it is the

class of the identity object of ReppHq. Therefore, to produce the above diagram, it suffices to provide an
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isomorphism:52

pX,Ň,Ť ¨ proj
´

trpq˚,IndCohτ IndCoh
Ť,˚ qpvolŤ q

¯

“

qX,Ň,Ť ¨ proj
´

trpτ IndCoh
B̌,˚ qtoy,˚,IndCohqpvolŤ q

¯

P Ω8ΓpLSarthm,˝
B̌

,ωq.

By construction, we have:

trpτ IndCoh
B̌,˚ qtoy,˚,IndCohqpvolŤ q “ clpτ IndCoh

B̌,˚ OBB̌ ,αq P Ω8ΓpLSarthmB̌ ,ωq.

Similarly, by base-change, we have:

trpq˚,IndCohτ IndCoh
Ť,˚ qpvolŤ q “ clpOLSrestr

B̌
ˆLSrestr

Ť
BŤ ,αq “ clpOLSrestr

B̌;Ť
,αq P Ω8ΓpLSarthmB̌ ,ωq.

So the identity follows from Lemma 4.6.6.4, reminding that LSarthmB̌;Ť “ LSarthm,˝
B̌

(see Remark 4.6.6.3).

Step 3. Concatenating diagrams (4.16) and (4.17), we obtain a commutative diagram:

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthmŤ ,ωq ΓpLSarthmǦ ,ωq

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpǦ

ad
{ Ǧ,ωq. ΓpLSarthmǦ ,ωq.

pX,Ň,Ť ¨´ trpτ IndCoh
Ť,˚ q

Eisspec

qX,Ň,Ť ¨´ Eisspec,toy trpτ IndCoh
Ǧ,˚ q

This diagram refines the theorem we were supposed to prove.
□
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